円弧状隅角部を有するプレキャストボックスカルバートの開発(その3)-性能確認試験の解析-

中日本高速道路株式	会社			正
清水建設株式会社				E
清水建設株式会社	正会員	石﨑	裕大	正

1. はじめに

円弧状隅角部を有するプレキャストボックスカル バート(以下,円弧状隅角部と記す)の性能確認試 験にあたり,試験体の破壊挙動および耐荷性能の把 握を目的として,ファイバーモデルを用いた非線形 解析を行った.本報では解析と試験を比較し、モデ ルの適用可能性を明らかにした.

2. 解析概要

ファイバーモデルでは、部材断面は複数の微小断 面に分割され,各微小断面が各々の構成則を持つ. このため、部材全体の骨格曲線は応力状態によって 変化し、軸力変動を考慮した解析が可能である. 解 析モデルを図1に示す.載荷状況を正確に再現する ため, 載荷装置のピン支承や載荷用鋼材等もモデル 化した. 解析に用いた材料構成則を表1に示す.

図 1 解析モデル図

± -	++ ++ ++ -+	I.
衣丨	われ つうしん しんしょう しんしょう しんしょう しんしん しんしん かんしん しんしん しんしん しんしん しんしん しんし	L

	応力ひずみモデル	履歴モデル		
コンクリート	Hoshikumaモデル ¹⁾	堺-川島モデル ²⁾		
鉄筋	F3Dモデル			
表 2	コンクリート材料試験結果			

弐段休夕	材齢	圧縮強度	弾性係数	ポアソン	引張強度	
武员 14 石	(日)	(N/mm^2)	(kN/mm^2)	比	(N/mm^2)	
試験前 8/23	23	39.0	30.5	0.198	2.89	
試験中 9/2	33	40.3	32.7	0.213	2.97	
試験後 9/25	56	46.8	32.8	0.212	3.52	

表3 鉄筋引張	長試験結果
---------	--------------

括粘	降伏点	引張強度	弾性係数	降伏ひずみ	伸び
作里沃貝	(N/mm ²)	(N/mm ²)	(kN/mm ²)	(µ)	(%)
D6	395.6	555.6	1734	2281	22.1
D10	384.6	565.4	178.8	2151	20.6
D13	385.5	558.7	183.9	2096	22.5
D16	376.4	539.3	184.1	2045	23.3

中村 洋丈 会員 非会員 蛯沢 佑紀 会員 荒木 尚幸 正会員 吉武 謙二 会員 〇山口 雄也 正会員 波多野 正邦

材料定数は材料試験から得られた値を用いた(表 2,3). コンクリートの弾性係数は,3回の試験値を 材齢で線形補間して用いた. 解析は試験と同様に正 負交番載荷とし、3回の繰り返しサイクルとした.

3. 解析結果と試験結果の比較

(1) 破壊位置

図 2 に載荷の最終状態における試験体の破壊状況 と,解析による破壊位置の比較を示す.解析におい てはコンクリートが終局ひずみとなった箇所を破壊 位置とした(青:コンクリート最大圧縮強度時ひず

表4 試験体一覧 (mm)

試験体名	隅角部の形状	頂版部材厚	側壁部材厚	鉄筋量
R−1	矩形	425	325	矩形として設計
A-1		425	325	R-1と同等
A-2	円弧状	425	325	円弧状として設計
A-3		425	425	A-2と同等

図2 解析と試験の破壊位置比較

キーワード: プレキャスト,ボックスカルバート,隅角部,モーメント,鉄筋量合理化 連絡先 〒104-8370 東京都中央区京橋2丁目16-1 清水建設株式会社 TEL 03-3561-3897 :

試験値と解析値の包絡線比較(A-2) 図 5

み箇所,赤:終局ひずみ箇所). R-1 では側壁の上部 が、また A-1, A-2 では円弧部の側壁に近い箇所が、 A-3 では円弧部中央が破壊位置となり、試験結果と 解析結果は概ね一致した.

(2) 荷重 - 変位曲線

試験と解析から得られた各試験体の荷重 - 変位包 絡線を図3~図6に示す.各試験体ともに鉄筋降伏変 位(±0.5%~±1.0%)までは試験値と解析値は近い 値を示しており,ファイバーモデルは試験体の挙動 をよく再現できている.降伏変位後においては水平 耐力の試験値が解析値を上回っている.特に隅角部 円弧状 (A-1~A-3) の-1.0%~-3.0% (開く側) では 試験と解析値の乖離が大きくなった. R-1, A-1 では 試験と比較して解析の方で先に荷重低下が生じた. 一方で A-2, A-3 では解析で荷重低下が生じる前に試 験において荷重低下が生じた.鉄筋降伏変位以降の 大変形時では解析と試験の違いが見られた.

図 6 試験値と解析値の包絡線比較(A-3)

4. 考察

図4

ファイバーモデルでは降伏変位までの部材の荷重 一変位関係を精度良く再現できており、矩形および 円弧状隅角部を有する部材に対してモデルの適用可 能性を確認できた. 降伏変位後に試験値が解析値を 上回ったことについて,解析ではコンクリートと鉄 筋の付着作用が考慮されておらず、コンクリートの 引張側の剛性を無視していること,鉄筋の2次勾配 比を設計値として 1/100 に設定したが材料試験の結 果から得られる 2 次勾配比よりも過小であること等 が要因となっている可能性がある.

参考文献

1)星隈順一,川島一彦,長屋和宏:鉄筋コンクリー ト橋脚の地震時保有水平耐力の照査に用いるコンク リートの応力-ひずみ関係,土木学会論文集, No.520/V-28, 1-11, 1995

2)堺淳一,川島一彦:部分的な除荷・再載荷を含む 履歴を表す修正 Menegotto-Pinto モデルの提案, 土木 学会論文集, No.738/I-64, 159-160, 2003