疲労荷重履歴が RC はりの剛性変化に及ぼす影響に関する実験的考察

				早稻田大学	学生会員	○松谷	篤
				早稲田大学	正会員	佐藤靖	青彦
早稲田大学	学生会員	柴沼	健	尾崎 允彦	非会員	末廣	陸

1. はじめに

構造物の維持管理は重要視されている. 道路床版 においては、繰り返しかかる交通荷重を受け、疲労 により損傷が進み押し抜きせん断破壊を起こす. こ の問題に関して、一定の荷重下での疲労寿命の推定 はある程度可能であるが、任意の時点での損傷度や 破壊プロセスの把握までは難しい現状である. また 実際の交通荷重は、荷重の大きさが変動するため現 象をより複雑にする. そこで本論文では、せん断圧 縮破壊を起こすせん断スパン比の RC はりを用いて、 荷重履歴を変えた疲労試験を行い、損傷度や破壊プ ロセスについて検討した.

2. 実験概要

本研究では,9 体の RC はりを用意した. 実験供試 体を図1に示す.

図1 供試体形状

実験では静的試験を3体,一定荷重下での疲労試 験を3体,1度荷重変更を加えた疲労試験を3体行 った.載荷パターンを疲労寿命とともに表1に示す. なお,下限荷重は5kNで統一した.

3. 実験結果および考察

3.1 静的体力の考え方と S-N 曲線

静的せん断体力のばらつきが大きいことが知られ ている. そこで,供試体 S1,S2,S3 において,75kN 付近で荷重を変位で除した値(割線剛性)と破壊時の 荷重をプロットし,線型近似で静的耐力を算定した.

キーワード 剛性変化, マイナー即, 疲労寿命, RC 連絡先 〒169-8555 東京都新宿区大久保 3-4-1 TEL03-5286-3852

表1 載荷パターンと疲労寿命

試験体	載荷方法	荷重(kN)	回数
S1			
S2	静的	_	-
S3			
F1		80	45544
F2	疲労	90	53
F3		80	95506
FF1	康	90→80	231→5844
FF2		80→90	4012→787
FF3	(何里爱史)	80→90	3011→1794

表2 破壊時の損傷度 m

試験体	破壊時の損傷度 m
F1	7.13
F2	0.18
F3	7.84
FF1	0.29
FF2	0.58
FF3	1.31

図2 剛性変化の傾向

他の試験体では割線剛性をその関係式に代入して静 的耐力を算定した.

そしてそれぞれの試験体について, 上限荷重比 S(繰返し荷重/静的耐力)と疲労寿命 N の関係を示す S-N 曲線(式1)¹⁾から疲労寿命を計算した. またそ の値からマイナー則(式 2)により損傷度 m を計算し

た.

S=1-logN/11	(1)
$m = \sum n_i / N_i$	(2)

ここで n は載荷回数を示す.

疲労試験を行った6体の試験体において,破壊時の 損傷度を表2に示す.

表2から, *m*=1となるべき破壊時の損傷度に誤差が 見られることから, 損傷の評価法は改善の余地があ ると考えられる. そのため破壊プロセスを追うため, 剛性の変化に着目した.

3-2 剛性変化の傾向

疲労試験を行った 6 体の試験体について剛性の変 化を調べた.縦軸を剛性, S-N 曲線と同様に横軸を logN とすると,明瞭な傾向はあまりみられなかった が,横軸をnとすると6体中4体において,最初に大 きく低下し,その後安定し,最後に再び低下する傾 向が見られた.最もその傾向がはっきりと見られた F3のデータを一例として図2に示す.

この3区間を図2のように定義する.3区間は以下のような方法で定義した.まず測定値のぶれがあると傾きの変化を追うことができないため、いくつかの区間に分けて結果に沿うような近似曲線を引き、それらをつなぎ合わせた.その近似曲線を用いて傾きの変化を求めた.本考察では、傾きが初期の値の0.1%となった地点を第一低下期の終点とした.また、最後の近似曲線を引いた区間内において、傾きが初期の値の2倍となった地点を安定期と第二低下期の境界点とした.この方法でF3,FF1,FF2,FF3の4体の供試体において、3区間の回数*n*1,*n*2,*n*3を定めた.

F1 については測定の不備から剛性の測定がきちん とできなかったため今回は検討には用いなかった. F2 は 53 回という少ない回数により破壊した影響か, 剛性は終始低下する傾向にあった.

3-3 剛性変化と損傷度の関連

剛性変化が以上のような 3 区間に分割されると仮 定し、それぞれの区間における損傷度 m₁,m₂,m₃ をマ イナー則により計算した.上限荷重比Sと共に、各区 間、全体の回数 n と損傷度 m,損傷割合 p(全体の損傷 度に対する各区間の損傷度)を表 3 に示す.

表3より3区間別で見た時,それぞれの区間の損 傷割合が決まっているとすると,第一低下期の損傷 は全体の1/3よりも小さいと考えられる.

表3 各区間の損傷

試験体	-	第一	安定	第二	全体
(S%)		低下	期	低下	
		期		期	
F3	n	873	84181	10452	95506
(63%)	m	0.072	6.915	0.859	7.845
	р	0.009	0.881	0.109	1.000
FF1	n	1138	1603	3334	6075
(67%→60%)	m	0.097	0.063	0.132	0.291
	Р	0.332	0.217	0.451	1.000
FF2	n	1174	3008	617	4799
(62%→70%)	m	0.071	0.244	0.263	0.578
	р	0.123	0.422	0.455	1.000
FF3	n	958	2145	1702	4805
(63%→71%)	m	0.078	0.221	1.010	1.309
	р	0.059	0.169	0.771	1.000

また、上限荷重比がほとんど変わらない FF2 と FF3 を比べると FF3 の方が安定期の損傷割合が少な く、第二低下期の損傷割合が多いことが読み取れる. このことから荷重を上げる変更をする場合は、その 変更タイミングが早いと安定期が縮まり、その分第 二低下期が延びると考えられる(図 3(a)). 一方、 FF1 では第一低下期の最中に荷重を下げる変更を行 ったため、第一低下期が本来よりも延び、安定期が その分縮まっていると考えられる(図 3(b)).

図3荷重を変えた場合の剛性変化の概念図

4. まとめ

今回の実験で剛性変化を追ったことで、剛性変化は 3つの区間に分けられると考えられた. また、第一 低下期は他の区間に比べて短いことが分かった. ま た、荷重を上げるとその区間を短縮させるように、 荷重を下げるとその区間を延長させるような効果が あることも読み取れた.

5. 参考文献

1)土木学会: コンクリート標準示方書 設計編, 土木 学会, 2017