8

passing

Percent

50

異なる締固め方法・含水比で締固めた土の力学特性と異方性に関する実験的研究

1. はじめに

締固めた土は、同一方向から荷重を与えるため、応力誘導異方性が 発達していると考えられる.鬼塚ら いや川尻ら 2)は実験により締固め た土の異方性による特性の違いを示している.本研究では、三軸圧縮 試験機を用いて,異なる含水比・締固め方法で作製した供試体に対し, 締固め方向を鉛直としたときに,鉛直方向から載荷した時と水平方向 から載荷した時の比較を行うことで、構成則での再現のための基礎デ ータを得るとともに、締固め土の異方性の違いを考察する.

2. 実験に用いる試料の概要

図1は使用した試料の粒径加積曲線を示す. 均等係数 Uc は 39.3, 曲率係数 Uc'は 3.75 であり、粒径幅が広い土である. なお、土粒子密度 ps は 2.716g/cm³ であった.図2は締固め曲線を示す.締固め試験は A-b 法で実施した.最大乾 燥密度 ρ_{dmax} は, 1.864g/cm³で, 最適含水比 w_{opt} は 13.5%であった.

3. 締固め方法・含水比が締固めた土の力学特性, 異方性に与える影響

3.1 供試体作製方法と実験方法

本研究では、締固め方向を鉛直としたときに、鉛直方向から載荷するケース(Vsample)と、水平方向から載荷するケース(H-sample)について、実験を行い異方性 の影響を調査した.いずれの供試体も目標締固め度は90%であり,図2の青線で 示した乾燥密度に対応する. 締固め時の含水比は, 最適含水比 14.1%よりも乾燥 側と湿潤側で設定した.乾燥側の含水比は8%で,湿潤側は17.5%である. V-sample は直径 5cm×高さ 10cm のモールドを用いて 3 層に分けて締固めた. H-sample に ついては、図3に示すように、直径15cmのモールドを用い、締固めた土を90度 回転させて,直径 5cm,高さ 10cm となるようにトリミングを行った. 締固め方法は,動 的締固めと静的締固めとした.動的締固めはランマーを用いて突き固めを行い,静的締固 めは、写真-1 に示す載荷装置を用い荷重を徐々に大きくしていくことで締固めを行った. いずれの供試体も三軸試験機にセットし、二重負圧法および背圧法で供試体を飽和化し、 B 値が 95%以上になっていることを確認した後、100kPa で等方圧密を行い、軸ひずみ 20%/dayのせん断速度で単調せん断を実施した.

3.2. 実験結果

図4に動的締固めの実験結果、図5に静的締固めの実験結果を示す.締固め方法に着目すると、乾燥側でも 湿潤側でも、せん断挙動には締固め方法の影響を受けていない、同じ密度であるのにも関わらず、乾燥側より も湿潤側の方が塑性膨張挙動を伴う硬化挙動が顕著であり、最大軸差応力が大きくなった.また、せん断初期 における剛性を見ると、乾燥側の方が若干大きくなった.図6に V-sample と H-sample の試験結果の比較を示 す. V-sample と H-sample は応力-ひずみ関係で顕著な違いがみられた. V-sample は軸ひずみ 4%程度でピーク 近くまで軸差応力が発生するのに対し、H-sample については、ひずみの

締固め,異方性,三軸圧縮試験

〒464-8603 名古屋市千種区不老町 名古屋大学大学院工学研究科土木工学専攻 TEL: 052-789-2734

図3 H-sample について

写真-1 載荷装置 進展とともに,徐々に軸差応力が大きくなっていった.これは特に乾燥側で顕著に見られる.ただし,最大軸 差応力については,静的/湿潤側を除き,締固め方法,締固め時の含水比の違いによらず V-sample, H-sample ともにほぼ同じ値であった.これはせん断時における密度がほとんど同じであるためだと考えられる.また, 有効応力パスについてもほとんど,変化が見られない.しかし,せん断終了時を限界状態と仮定して,限界状 態線を引くと,限界状態線傾き M は V-sample の方が H-sample よりも大きかった.また M の値の差は乾燥側 の方が湿潤側よりも大きかった.以上のことから,締固め方法よりも締固め時における含水比の方が異方性に 与える影響が大きく,乾燥側で締固めた方が,異方性が顕著にみられた.

4. おわりに

本報告では,締固め時の含水比や締固め方法が,締固めた土の力学特性に与える影響を,特に異方性に着目 して考察した.その結果,締固め方法による違いはほとんど見られず,締固め時の含水比の影響が大きいこと がわかった.特に乾燥側で締固めた場合,異方性の違いが顕著にみられた.鬼塚ら¹⁾や,川尻ら²⁾は,締固め方 法により力学特性が異なることを示した.また,Lambe³⁾は,乾燥側で締固めた時は粒子の配向がランダムで, 湿潤側で締固め時は粒子の配向が同じになることを示していることから,湿潤側の方が,異方性があると考え られる.本研究では,これらの研究とは逆の結果となったため,これらの研究と本研究の試験条件の違いを見 ながら原因を考察していく.また,さらにデータを蓄積していき,弾塑性構成式による再現を目指す. 参考文献

1)鬼塚ら(1979): 締固めた土の圧縮及び強度異方性について、土木工学会論文報告集, Vol.19, No.3, pp.113-123. 2)川尻ら(2011): 締 固めた地盤材料の変形・強度特性に及ぼす締固め時の含水比および締固め方法の影響,土木学会論文集 C (地圏工学), Vol.67, No.4, pp.532-543. 3) Lambe, T. W. (1959): The structure of compacted clays, Journal of SMFD, Proceeding of ACSE, Vol84, SM2, pp.1655-1-1655-35