細粒分を含む砂質土の qc 値と液状化強度に及ぼす水平応力比の影響

(㈱不動テトラ	正会員	原田健二	矢部浩史
中央大学	名誉会員	石原研而	

1.はじめに

前報¹⁾では,きれいな砂と細粒分を含む砂質土に対する加圧式土槽を用いた標準貫入試験(SPT)と等方・異方空中ねじりせん断試験結果を基に水平応力比を考慮した換算 N 値 N₁値と液状化強度の関係図を提示した.本報においては,砂と砂質土に対する土槽を用いたコーン貫入実験(CPT)の結果に基づいて水平応力比を考慮した換算 qc 値 qc₁値と液状化強度の関係図を提示する.

2. qc1値と相対密度及び液状化強度の関係

(1) qc1 値と相対密度

筆者らは,既往のコーン土槽実験結果より砂に対 するコーン抵抗 *q*_{c1}値と相対密度 *Dr* の関係を *q*_{c1}と *Dr*²の勾配 *C*_{*Dq*}を使って(1)のように定式化した²⁾.

	Material	s	F _C (%)	Uc	e _{max}	e _{min}	e _{min} *
(a)	Toyoura	2.657	0.0	1.54	0.973	0.607	-
(b)	Da Nang	2.610	0.0	1.84	0.808	0.515	-
(c)	Omigawa	2.698	10.7	3.33	1.495	0.884	0.824
(d)	Inage	2.546	23.8	11.11	1.021	0.509	0.394

表1 対象試料

$$q_{c1} = C_{Dq} \cdot D_r^2 = \frac{12}{(e_{max} - e_{min})^{0.8}} \cdot D_r^2 \qquad \begin{cases} e_{max} : JIS による最大間隙比 \\ e_{mim} : JIS による最小間隙比 \end{cases}$$
(1)

また,表1に示す細粒分を含む試料((c),(d))の土槽実験結果を追加し,式(2)で細粒分含有率 Fc から 推定した突固め試験による e_{min}である e_{min}*で定義する密度指摘 Dr*(式(3))でプロットしても式(1)の 曲線によくのっていること,すなわち Dr, e_{min}を Dr*, e_{min}*で置き換えても成立することを示した³⁾.

$$e_{min}^*/e_{min} = \begin{cases} 0.1 \ (0 \le rc \le 3) \\ -0.012Fc + 1.06 \ (5 \le Fc \le 30) \\ 0.7 \ (Fc > 30) \end{cases}$$
(2)
$$D_r^* = \frac{e_{max} - e}{e_{max} - e_{min}^*}$$
(3)

(2) 補正 q_{c1} 値と液状化強度

鈴木・時松⁴⁾は、CPTの計測値から得られた土性指標 *I*(式(4))を使って細粒分補正された *qc*₁値(*qc*₁)_{*Fc*}
(式(5))と液状化強度 *R*(式(6))の関係を示しており、今回の検討にはこの基準式を用いた。

$$I_{c} = [(3.47 - \log Q_{t})^{2} + (\log F_{r} + 1.22)^{2}]^{0.5} \begin{cases} Q_{t} = (q_{t} - \sigma_{z})/\sigma_{z} \\ F_{r} = f_{s}/(q_{t} - \sigma_{z}) \times 100(\%) \end{cases}$$
(4)
$$\begin{bmatrix} (q_{c1})_{FC} = F(I_{c}) \cdot q_{c1} \\ F(I_{c}) = \begin{cases} 1.0 (I_{c} \le 1.64) \\ -0.403 \cdot I_{c}^{4} + 5.581 \cdot I_{c}^{3} - 21.63 \cdot I_{c}^{2} \\ +33.75 \cdot I_{c} - 17.88 (I_{c} > 1.64) \end{cases}$$
(5)
$$\begin{bmatrix} R = \frac{1}{0.65} \times \frac{\tau_{\ell}}{\sigma_{o}'} = \frac{1}{0.65} \times \left[0.45 \times 0.75 \times \left\{ \frac{16\sqrt{Nc}}{100} + \left(\frac{\sqrt{Nc}}{83.7} \right)^{14} \right\} \right] \\ N_{c} = \begin{cases} 0.341Ic^{1.94}(qc_{1} - 0.2)^{1.34 - 0.0927Ic} \\ (qc_{1} > 0.2Mpa) \\ 0 (qc_{1} \le 0.2Mpa) \end{cases}$$
(6)

3.水平応力比が qc1 値と液状化強度に及ぼす効果

伊藤ら⁵⁾は土層実験より表 1 の試料(a),(c),(d)に対して水平応力比 *Kc* を変えてコーン貫入試験を実施した.結果を図 1 に示すが,すべての試料に対して *Kc* の増加は *q*_{c1}値を増加させることがわかる.

キーワード:細粒分,水平応力比,qc値,液状化強度 連絡先:〒103-0016 東京都中央区日本橋小網町 7-2 TEL 03-5644-8534

 E_{C}

 $_{Fc})_{Kc}/((qc_1)_{Fc})_{Kc=0.5}$

C_{CPH}*=((qc₁)

1.3

(1) qc1 値に及ぼす効果

筆者らは,きれいな砂について Kc 値増加の qc 値に及ぼす影響の効果 を $C_{CPH} = (qc_1)_{Kc}/(qc_1)_{Kc,NC}$ として定義し,この関係を式(7)で示した²⁾.

$$C_{CPH} = \left(\frac{K_C}{K_{C,NC}}\right)^{0.60-0.35D_r} \tag{7}$$

細粒分を含む砂質土について Kc 値増加の $(qc_1)_{Fc}$ 値に及ぼす影響の効果 として新たに $C_{CPH}^* = ((qc_1)_{Fc})_{Kc}/((qc_1)_{Fc})_{Kc,NC}$ として定義し, C_{CPH} の Fcの影響を見るために式(8)に示す係数 $F_{(qc_1)Fc}(Fc)$ を使って Fc に対してプロットしたものが図 2 である.同図より式(9)に近似されることがわかる.

$$C_{CPH}^{*} = F_{(qc_1)Fc}(Fc) \cdot C_{CPH}$$
 (8) $F_{(qc_1)Fc} = \left(\frac{Kc}{K_{C,NC}}\right)^{0.20(\overline{100})}$

表1に示す4つの試料の実験結果より求められた *C_{CPH}**と *Dr** の関係でプロットしたものが図3である.同図には式(8)に式(7) と(9)で定式化した曲線を示しており,よくフィッティングする. (2)液状化強度に及ぼす効果

*Kc*の液状化強度に及ぼす効果については,前報¹⁾で示したように式(10)に示す関係が成立する.

 $(R)_{K_{C}} = \frac{1 + 2K_{C}}{1 + 2K_{C,NC}} \cdot (R)_{K_{C,NC}} \begin{cases} (R)_{K_{C}} : 任意の K_{C} 状態における R \\ (R)_{K_{C,NC}} : 正規圧密状態における R \end{cases}$ (10) 4 . qc_{1} 値と液状化強度の関係

式(3)で定義した *Dr**を導入し,*Kc* 値の *qc*1値に及ぼす効果については式(7),(9)の近似式で,*R*については式(10)の近似式を用い

ることでそれぞれ($(qc_1)_{Fc}$)_{Kc}, $(R)_{Kc}$ を推定できる .R については Fc

に依らず式(10)は成立するが, qc_1 値についての係数は式(8),(9)により細粒分補正する.このように, Dr^* を介して Kc 毎の $R \sim Dr^*$ 関係と qc_1 値の関係を組み合わせることにより, qc_1 値と R の関係を示すことが でき,Fc=10, 30, 50, 70%毎に両者の関係を示したものが図 4 である.同図より,いずれの Fc において 計測した qc_1 値が同じであっても Kc 値が大きいほど R が大きくなることがわかる.

4.おわりに

図 4 細粒分ごとの qc1 値と液状化強度の関係

本報においては,細粒分を含んだ砂に対する土槽実験と室内実験結果を展開して,水平応力比を考慮した *qc*1値と *R* の関係を細粒分毎のチャートで提示した.

【参考文献】1) 原田ら(2020):細粒分を含む砂質土の N 値と液状化強度に及ぼす水平応力比の影響,第 54 回地盤工学研究発表会(投稿中)2) Harada, K. and Ishihara, K. et al. (2008) "Relations between penetration resistance and cyclic strength to liquefaction as affected by Kc-conditions." Proc, GEESD IV Paper 111. 3) 原田・石原(2012):細粒分を含む土の最小間隙比と相対密度についての一考察,日本地震工学会大会 2012 梗概集, pp.276-277. 4) 鈴木・時松(2003):コーン貫入試験結果と凍結サンプリング試料の液状化強度の関係,日本建築学会構造系論文集,第 566 号,81-88. 5) 伊藤ら(2005):砂地盤のコーン貫入抵抗値と相対密度の関係について,土木木学会第 60 回年次学術講演会,3-4.

図3 C_{CPH}とDr*の関係