被圧地下水を考慮したクリープ性地すべりの FEM 解析

1. はじめに

クリープ性地すべりと呼ばれる緩慢な地すべり運 動においては,移動速度が斜面内の地下水位と強い 相関性を持つことが知られている¹⁾。本研究では崩 壊を引き起こす前段階の地すべり運動に着目してお り,研究対象とした地すべり事例の数値解析は既に 取り組まれている。しかし,地すべり予測を行うに あたり観測結果に対する解析結果の精度を向上する 必要がある。過去に行ったケーススタディから,地 下水位変動に対する安全率を精度よく評価すること で計算精度につながることが示唆された。

本研究では地すべり斜面に数多く見られる被圧地 下水の圧力水頭を静水圧に上乗せする地下水位モデ ルを作成した。仮定したすべり層に対して粘性的な 抵抗特性を加えた有限要素解析モデルを適用し,地 すべり変動の再現的解析を試みる。

2. 数値解析モデル

降伏時に生じる塑性ひずみ成分をすべて粘塑性で あると仮定している。塑性ポテンシャルgに基づく 流れ則は単位時間当たりの塑性ひずみ増分として, 次式で定義される。ここに, $\dot{\Lambda}$ は有効応力に応じて 変化する関数である。

$$\dot{\varepsilon}^{p} = \dot{\Lambda} \frac{\delta g}{\delta \sigma} \tag{1}$$

"移動速度は安全率の冪関数で表される"という経験則²⁾に基づき,すべり面の各位置における局所安 全率がその位置で生じうるひずみ速度を規定すると 仮定すれば,八面体せん断ひずみý_{max}の単位時間当 たりの増分は以下のように定義することができる。

$$\dot{\gamma}_{\max} \leq \frac{\dot{\alpha}}{F_{s,local}^n}$$
 (2)

群馬大学	学生	E会員	〇大	、澤	宗-	一郎
元群馬大学	学	非会員		小谷	- 1	建太
群馬大学	学	正会員		若井	:	明彦

3. 地すべり事例

本地すべりは群馬県吾妻郡高山村尻高地区で発生 し、地すべり防止区域に指定されており、過去にも 地すべりの発生した履歴が確認される。地すべり地 下部では急斜面から緩斜面、その背後に急斜面とす る地すべり地形を呈している。本地すべり規模は、 最大幅 134m、最大長さ 111m、最大厚さ 15.3m、平均 斜度 12.5°のクリープ性地すべり(図―1)である。

現地で観測された地下水位を図―2に示す。この地 区では2月8日に約30cm,2月14日に約70cmの降 雪が観測された。2月下旬から3月上旬にかけて融雪 水が地盤内への浸透により、地下水位が上昇した。

図-1 戸室地すべり断面図

キーワード クリープ,安全率,地下水位,数値解析 連絡先 〒376-8515 群馬県天神町一丁目 5-1 TEL0277-30-1622

表―1 解析計算に用いた材料定数

地盤名称	E (kN/m ²)	ν (-)	c' (kN/m ²)	φ ['] (deg.)	Ψ (deg.)	$_{(kN/m^3)}^{\gamma}$	ά (day-1)	n (-)
火山灰質粘性土	5000	0.4	50	40	0	14	-	-
シルト質砂	5000	0.4	0	30	0	18	-	-
礫混じり粘土	3193	0.4	8.25	20.9	0	15	-	-
すべり面(地層境界面)	3193	0.45	4	9	0	15	0.28	18
すべり面(崩積土内部)	3193	0.45	0	9	0	18	0.28	18
軽石凝灰岩	50000	0.45	5000	30	0	18	-	-

4. 解析条件

地下水位観測孔内で測定された水位は位置水頭と 圧力水頭が合成されたと考えられる³⁾。地すべり斜 面内には透水性の高い軽石凝灰岩の上位に,透水性 の低い礫混じり粘土層が存在する。そのため斜面背 後から流入する地下水が被圧され,静水圧状態より も高い圧力水頭を持つ。被圧地下水の圧力水頭を考 慮した地下水位モデル作成にあたり,経験的に知ら れている安全率と移動速度の相関関係²⁾と地すべり 斜面の安全率が10%減少すると,移動速度が10倍と なる関係⁴⁾を手がかりとし,地下水位の下限値から の差を定数倍した地下水位高さとした。

地盤伸縮計 S-2 により観測された移動速度とその 観測時刻において SSRFEM により計算された全体安 全率の相関よりひずみ速度を規定するパラメータ \dot{a} , nを決定した。変位速度と全体安全率を両対数グラ フにプロットしたものが図—3 である。近似直線の切 片と傾きの関係から \dot{a} を 0.07, nを 24 とした。数値 計算で使用したその他の材料定数を表—1 にまとめ た。

5. 解析結果

地盤伸縮計 S-1 により観測された観測値と数値解 析で得られた解析値の変位量を比較した(図―4)。最 終変位量を比較すると数 cm の誤差は生じているが,

融雪による変位の上昇からその後の変位が安定する までの地すべり運動をおおむね再現している。しか し,2014年3月1日より前の期間では解析値の変位 速度は段階的に小さくなり,段階的に大きくなる観 測値とは異なる様子となった。与えたすべり層の材 料強度を過大に,もしくは与えた地下水位面が現実 の圧力水頭を過少に評価していると考える。

6. まとめ

被圧地下水を考慮して弾粘塑性解析を行い,地す べり運動がおおむね再現された。解析結果への影響 が大きいすべり層の材料強度や地下水位モデルにお いては改良の余地を残す。今後は本研究結果を基に 地すべり予測への拡張や他の地すべり事例で本手法 を用いた検討が望まれる。

謝辞

日本サーベイ江口喜彦氏,関晴夫氏,日特建設上 野雄一氏に数々の貴重なご指導をいただきました。 また,群馬県の関係者の方々にはデータをご提供い ただくなど,大変お世話になりました。ここに記し て謝意を表します。

参考文献

1) Conte, E., Donato, A. and Troncone, A. (2014): A finite element approach for the analysis of active slow-moving landslides, Landslides, Vol.11, No.4, pp.723-731.

2) Vulliet, L. and Hutter, K. (1988): Viscous-type sliding laws for landslides, Canadian Geotechnical Journal, Vol.25, No.3, pp.467-477.

 竹内篤雄(2019):地すべりキーワード101-37-, 日本地すべり学会誌, Vol.56, No.5, pp.289-291.

4) 菅原紀明(2003): クリープ性地すべり斜面の安
全率と地表の変位速度,応用地質技術年報, No.23,
pp.1-18.