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1. INTRODUCTION 
      High velocity open channel flows in the downstream of an abrupt expansion illustrated in Fig. 1 are considered as one 

of the basic flows studied in Hydraulic Engineering. Puay and Hosoda [1] divided the flow into three regions based on the 

method of characteristics (MOC) as shown in Fig 2. But the analytical solution of λ2 line staring at the point W in Fig 2 

was not derived yet. In this study, the λ2 line is calculated using the theoretical relations derived based on MOC. The results 

are verified in comparison to the simulated results obtained using the shallow water equations. 

2. GOVERNING EQUATIONS AND BASIC RELATIONS 

   The shallow water equations denoted as Eq. (1) and (2) are used as the basic equations for analysis. 
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where u  and w  are the components of depth-averaged velocity vectors in x  and z  directions, respectively, h  is the 

water depth, and g is the acceleration due to gravity. 

   The characteristic lines 
1 ,

2 , and 
3 with its corresponding eigenvectors 

1 2,  , and
3  are derived as follows: 
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   Multiplying Eq. (1) by eigenvectors, 
1 2,  and 

3 on the left side of Eq. (1), the following relations which are satisfied 

along the characteristic lines are derived as Eq. (5).  
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   Since the relation along
1 means the energy conservation along a stream line, the following equation is valid in the whole 

flow region.  
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where
0h and 

0V are the inlet depth and velocity, respectively.             

   The velocity components x and z directions are related to the angle between the stream line and z -axis. 
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   Since the
3 -lines emancipating at 

0(0, )b are straight lines [1] , the relation along
3 -line is given as Eq. (8). 
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    The relation along 
2 -line is given as Eq. (9)                                                                                                            (9) 
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   Using these two equations leads to the following relation which is satisfied along 
2 -line starting at W. 
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   Eq. (9) can be integrated numerically for h  ranging from 
0h to 0, resulting in the water depth distribution along λ2 line 

starting at W.  
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                Fig. 1. Flow parameters used in the analysis                   Fig. 2. Characteristics lines trajectories 

3. NUMERICAL ANALYSIS 

   The basic equations in ( , )x z system are transformed into the equations in ( , )  system defined as Eq. (11). 
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         Fig. 3. The symbols used in coordinate transformation        Fig. 4. Grid system in ( , )  coordinate system   

   Based on MOC, the equations which are satisfied along the characteristic lines are derived, and then are discretized into 

the finite difference equations with 1st-order upwind scheme. The simulation was conducted under the following 

conditions 
0 0 00.125m, 0.25m, 4h b Fr   , 0.005  m and 0.01  . 

4. NUMERICAL RESULTS        

   Fig. 5 shows the 3-D contour map of depth. Using the results, the calculated trace of
2 line and the depth distributions 

is compared to the numerical integration of Eq. (10) in Fig. 7 and Fig. 8. 
 

 

 

 
 

 

 

 

Fig. 5. Symmetrical half of the simulated flow contour                 Fig. 6. Simulated depth and velocity distributions at 0.1m   

 

 

 

 

 

 

 

 

 
 

Fig. 7.  The trace of λ2 line by linear solution and numerical results         Fig. 8. Comparisons results of depth distribution on λ2 line             
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