洪水時の石組み魚道を越える流れに対する堰越流面形状の影響

Effect of downstream shape of weir on flood flows passing over fish passage with stacked boulders

日本大学 理工学部 正会員 安田 陽一 日本大学大学院 理工学研究科 学生会員 〇金野 滉太

1. 目的

全国に魚道が必要な場所や既設魚道として機能して いない場所が数多く存在する.しかし,恒久的な魚道は 費用・工期の面から新設・改良が進まないのが現状であ る.これらに対し,近年,安田らによって石組み魚道が 提案されいる^{1),2)}.石組み魚道の中でも石を生コンクリ ートで打設し強度を高めたものを練積み石組み魚道と いう.魚道を設置する場合,接続される堰形状は様々で あり,形状によって越流面が異なる.そのため越流面形 状によって,洪水時の石組み魚道周辺の流れが異なる と推察されるが,その影響は考慮されていない.実際の 施工において,洪水時における石組み魚道に対する越 流面の流入の仕方や,それに伴う石組み魚道周辺への 影響を明らかにすることは石組み魚道を普及するにあ たって重要である.

本研究では、矩形堰、Ogee crest 堰を対象に石組み魚 道下流端の流速および底面圧力の測定結果から越流面 形状の違いについて実験的検討を行った.

2. 実験概要

長方形断面水平開水路(幅 0.80m, 長さ 14.5m, 高さ 0.60m)に厚さ 0.02m の耐水性合板を敷き, その上に堰 模型(落差 *H*=0.10m)を設置し, 堰形状 θ を変化させ

(矩形堰・Ogee crest 堰), フルードの相似則に基づき実 験的検討を行った(表1参照).ここに相対落差 H/d_c は 限界水深 d_c に対する落差高さHを示す.平均粒径 0.03~0.06mの石と平均粒径 0.01m 前後の玉石を用い, 幅 B=0.50m,長さL=0.50m,落差H=0.10m,魚道勾配 i=1/5の練積み石組み魚道を再現した.練積み石組み魚 道模型は $b_1=0.20m$, $b_2=0.30m$ の扇形に配置し,練積み 部分は粉パテの量:セメントの量=2:1 で配合した.測定 器具は,流速測定にプロペラ流速計(内径 30mm,測定 時間 20sec),底面圧力の測定にピトー管(内径 1mm) の静圧管,水深の測定にポイントゲージを用いた.測定 点は下流端の石を対象に14 点設けた(図1,図2).堰 始端を基準に流下方向座標を x 軸,水路右岸側壁を基 準に左岸側を正とした水路横断方向座標を y 軸,水路 床を基準とした鉛直上向き座標を z 軸とする.

表1 実験条件

キーワード 石組み魚道, 練積み, 堰越流面形状, 矩形堰, Ogee crest 堰 連絡先 東京都千代田区神田駿河台 1-8 TEL.03-3529-0409 E-mail: yasuda.youichi@nihon-u.ac.jp

3. 石組み下流端での流速変化

図3に石組み下流端での測定点1,7,14の流速につい て相対流速 $\overline{u}/V_c=(H/d_c,y/B,x/L,\theta,i)$ の関係で整理したも のを示す.ここに \overline{u} は流下方向の時間平均流速, V_c は限 界流速,y/Bおよびx/Lは測定位置を示す.測定は下流 端の石組み先端から流下方向に $l_a=5$ cm の位置で行った. 図3に示されるように H/d_c が小さくなると、石組みを 乗り越えた下流端の \overline{u}/V_c は減少する.また、測定点14 で矩形堰と Ogee crest 堰の相対流速の違いが見られ、 H/d_c が小さくなるほど、その違いが大きくなる.これは、 測定点14では、矩形堰を越える流れによる剥離の渦の 影響を受けやすく、一方で Ogee crest 堰を越える流れは 堰形状に沿った流れが継続しやすいため流速差が生じ たものと考えられる.

4. 石組み下流端での底面圧力分布

石組み下流端において, 圧力係数 $C_{dp} = p_d / (\rho \bar{u}^2 / 2)$ につ いて整理したものを図4に示す.ここに、 $\rho \bar{u}^2/2$ は運動 エネルギー, pdはピトー管で測定したピエゾ水頭から 圧力を算定し、静水圧を差し引いたものである.測定は、 石組み先端からし_b=1.8cm の位置で行い,静水圧はピト ー管の静圧管位置(l_b=1.8cm)での水深から算定した.図 4 より, 測定番号 10~14 において堰形状によって圧力 分布が異なることがわかる. これは堰の越流面形状に よって左岸側ほど石組みの形状抵抗が異なるものと推 定される. H/dc=1.20 で矩形堰において測定点 13,14の 圧力係数が負の値を示す. H/dc=0.92 になると, 測定点 10, 11, 12 でも負の値を示す. これは流量規模の増加に 伴い、よどみ点距離が長くなるため剥離域の形成領域 が大きくなり、圧力が低下しているものと推定される. Ogee crest 堰の場合, H/d_c=1.91,1.20,0.92 において圧力 係数の値がほぼ 0 であり、剥離流れが形成されにくい が、流量規模が大きくなるにつれて剥離域が形成され ると推定される.

5. まとめ

本研究において,堰の越流面形状によって石組みを 乗り越える流線の曲がりが異なることが明らかになっ た.すなわち,越流面形状によって石組みに対する流 入の仕方が異なり,流量規模の増加に伴い,よどみ点 距離が長くなるため剥離域の形成領域が大きくなる.

上記の結果から、石組みに対する越流面の衝突およ び石組み下流側の河床保護への影響が越流面形状によ って異なることが考えられ、今後の検討課題とする.

図4 石組み下流端での圧力分布

参考文献

- (1) 安田陽一:頭首工に設置された石組み魚道に関する実験から実務への適用,土木学会 河川技術論文集,第 24 巻, pp.125-130,2018
- (2) 安田陽一:技術者のための魚道ガイドライン-初 版第1刷,コロナ社,2011.