強震時の堤体の非線形性はアーチダムの耐震性評価にどう影響するか

弘前大学 フェロー会員 有賀 義明

1.概要

コンクリートダムの耐震性能照査では地震時の引張応 力が重要な評価指標であり,強震時の評価では動的変形 特性の非線形性の考慮如何が議論になる.そこで,動的 せん断剛性の非線形性に着目し,その変化がダムの耐震 性評価にどう影響するか三次元動的解析により検討した. 2.三次元動的解析の方法

(1) 解析対象

解析対象は,図-1に示した,堤高100m,堤頂長310m の理想化したアーチダムとした.基礎岩盤は,幅600m, 奥行き500m,高さ300mの領域をモデル化した.ダムお よび基礎岩盤は8節点ソリッド要素でモデル化し,側方 境界は粘性境界,下方境界は剛基盤とした.

(2) 貯水条件

貯水池が満水の場合,アーチダムには水圧が作用し堤 体は圧縮応力状態になる.貯水が無い場合は,貯水の水 圧が作用しないため,強震動を受けた場合,堤体には引 張応力が容易に発生し易くなる.したがって,耐震性評 価の視点では満水時よりも空虚時の方が危険な条件にな るため,ここでは空虚時を設定した.

(3) 解析用物性值

堤体の非線形性は,ダムコンクリートの引張試験の結果¹⁾と2011年東北地方太平洋沖地震時の実ダムの実地 震時挙動の再現解析の結果²⁾に基づき図-2のように設定 し,堤体の動的解析用物性値は,非線形性の影響を比較 検討するために表-2に示したように微震時(G/Go=1.0) と強震時(G/Go=0.65)の2ケースを設定した.

等価線形解析を行った場合,動的解析が収束した時の 動的剛性の値は,各要素によって異なるため,非線形性 の影響を単純に考察することが難しい.そのため,ここ では,非線形性の影響を単純に考察するために,非線形 性を考慮して動的剛性の値を設定した上で,解析は,線 形解析により行った.解析には,汎用解析プログラム ISCEFを使用した.

(4) 入力地震動

解析には,図-3 に示した,土木学会コンクリート標 準示方書耐震性能照査編に例示されたレベル2地震動基 盤波を用い,下方基盤より上下流方向に入力した.

図-3 入力地震動

表-1 堤体の動的解析用物性値

Case	動的世化腳裡	密度	ポアソ	減衰	備考
	N/mm ²	t/m ³	ン比	定数	G/G0
1	9250	2.40	0.20	0.05	1.0
2	6000	2.40	0.20	0.05	0.65

(G/G₀:動的せん断剛性の低下率)

表-2 基礎岩盤の動的解析用物性値

動的世化断剛性	S波速度	密度	ポアソン	減衰
N/mm ²	m/s	t/m	比	定数
4500	1315	2.60	0.25	0.05

キーワード:アーチダム,耐震性能照査,非線形性,三次元動的解析,地震時引張応力 連絡先:〒036-8561 弘前市文京町 3, 弘前大学大学院理工学研究科 Email: y-a-arig@hirosaki-u.ac.jp

3. 三次元動的解析の結果

地震動によって発生した変位と引張応力について,堤 体と基礎岩盤の代表出力位置での最大値をそれぞれ表-3 と表-4に示す.代表出力位置は図-4に示したとおりであ り,堤体と基礎岩盤での最大引張応力の分布をそれぞれ 図-5と図-6に示す.

(1) 堤体の変位と引張応力に対する影響

堤体の非線形性の影響は,堤体天端中央(位置3)で 顕著に現われており,動的せん断剛性が9250 N/mm²から 6000 N/mm²に低下したことによって,堤体の最大変位は 49.7 cmから63.5 cmに増大し,最大引張応力は13.13 N/mm² から10.40 N/mm²に低下した.動的剛性の低下に伴い堤体 の引張応力は全体的に低下傾向を示した.また,位置2 (天端・右寄)では最大引張応力が15.18 N/mm²から15.72 N/mm²に,位置4(天端・左寄)では11.58 N/mm²から 12.49 N/mm²になり,僅かではあるが増加した.

(2) 基礎岩盤の変位と引張応力に対する影響

今回の解析では堤体の動的剛性だけを変化させたが, 表-4から分かるように,基礎岩盤での最大変位と最大引 張応力に関しては値に殆ど差は見られなかった.

4.考察

コンクリートダムの耐震性は,加速度,変位ではなく 引張応力に支配されるため,引張応力が耐震性評価の重 要な指標になる.堤体の動的剛性を低下させた場合,地 震動によって堤体に発生した引張応力は全体的に低下傾 向を示した.このことから,強震時の堤体の非線形性は アーチダムの耐震性評価に有利な影響を及ぼす可能性が あると推察される.換言すれば,非線形性を考慮しない 場合は安全サイドの評価になるものと推察される.ただ し,引張応力が僅かに増加した位置も見られたので,も し引張応力が大きく増大する事例では留意が必要である.

参考文献

1) 畑野正:コンクリートの如き脆弱体のひずみに立脚した破壊 論,土木学会論文集第153号, pp.31-39, 1968.

表-3 地震動による堤体の変位と引張応力

		堤体の動的せん断剛性(N/mm ²)				
位 置		G=9250	G=6000	G=9250	G=6000	
		堤体の最大変位		堤体の最大引張応力		
		(cm)		(N/mm ²)		
1	天端・右岸	29.7	29.9	7.10	5.96	
2	天端・右寄	36.3	41.8	15.18	15.72	
3	天端・中央	49.7	63.5	13.14	10.40	
4	天端・左寄	42.2	47.4	11.58	12.49	
5	天端・左岸	30.1	30.3	13.21	11.94	
6	底部・中央	17.7	17.6	12.81	12.72	
7	底部・左岸	21.0	21.0	10.47	8.23	
8	底部・右岸	19.5	19.4	8.18	6.96	

表-4 地震動による基礎岩盤の変位と引張応力

	位置	堤体の動的せん断剛性(N/mm2)				
		G=9250	G=6000	G=9250	G=6000	
		岩盤の最大変位 (cm)		岩盤の最大引張応力 (N/mm ²)		
1	右岸・上段	28.2	28.3	3.15	3.20	
2	右岸・中段	25.6	25.6	3.85	3.77	
3	右岸・下段	22.2	22.2	3.68	3.58	
4	左岸・上段	28.9	29.1	3.54	3.53	
5	左岸・中段	26.8	26.9	4.03	4.04	
6	左岸・下段	23.8	23.8	4.27	4.23	

図-6 基礎岩盤での地震動による引張応力の分布

 2) 有賀義明,上島照幸,仲村成貴,塩尻弘雄:三次元動的解析 による 2011 年東北地方太平洋沖地震におけるダブルアーチ ダムの耐震性評価,土木学会論文集 A1 (構造・地震工学), Vol.70, No.4 (地震工学論文集第 33 巻), _121- _129,2014.