鋼桁のひずみ測定による作用力の推定に関する基礎的検討

名城大学 学生会員 〇川上 峻幸 名城大学 正会員 渡辺 孝一

1. はじめに

平成 28 年に発生した熊本地震では、中小の既設橋梁の桁端部の損傷が多く確認された¹⁾. 損傷した桁橋を 適切に補修補強し、早期に橋の機能を回復させることは被災地の復旧復興のために重要であり、かつ急性が求 められる. 地震によって桁橋の支承部を含めた主桁端部周辺が損傷した場合、機能回復のための構造解析では 橋の設計荷重で計算され、作用応力が安全側になるよう余裕を見た断面補強が行われる. 過度に安全側の補修 によって予期せぬ応力集中の発生や疲労損傷等も考慮すると、実橋梁の実測応力を適切に反映した補強構造 が適用されることは、補修後の橋梁を長期的かつ安全に使用する観点からも重要である. 本研究はこうした補 修補強構造を適切な断面とするための設計手法の確立を目標としている. そのための基礎的検討として、単純 支持桁を対象に荷重作用時に得られる実測ひずみデータから推定される桁の支点反力の推定精度を検討する.

2. 解析概要

検討対象とする桁は長さ 1,800mm の H 鋼 (呼び寸法 300×150) を使用する. 支間は 1,600mm の単純支持形式とし,桁端から 100mm と支間中央部のウェブ両側にそれぞれ縦リブを設けた. 図1に解析 モデル概形を示す. モデル寸法は供試体断面を実測して与え,ウェ ブ高さ H_w=282mm,ウェブ厚 t_w=6.5mm,フランジ厚 t_f=8.45mm,フ ランジ幅 B_f=150mm をシェル要素により作成した.初期たわみや残 留応力は与えていない. 材料定数は実験結果に合わせ,降伏応力 σ_y =302MPa,ヤング率 E=200GPa,ポアソン比 v=0.3 とし,材料構成 則は二次勾配が E/100 のバイリニア型を与えた.

荷重は支間中央部に載荷板を介して強制変位として与え,実験結 果と比較するため後述するひずみゲージ位置と同様の位置で比較 検討を行う.

3. 実験概要

図2に実験桁と載荷装置の外観,図3に実験供試体のひずみゲージ設置位置を示す.ひずみゲージ(3 軸型式 KFGS-3-120-D17-11 L5M3S)の測定位置は,文献2)より支点から16%と30%の位置でウェブ高さ方向に5箇所片面に貼付した.荷重は1MN 容量の油圧ジャッキで与え,変位制御により載荷を行う.支間中央の鉛直たわみや支点沈下は,ダイヤルゲージ(最小読み1/500mm)を用いて載荷装置とは独立させ測定した.

4. 実験結果

図4に実験値と解析値を比較した荷重載荷直下での荷重変位曲線 を示す.本実験桁は桁高さと支間長の比率が0.19であり,荷重作用 時のせん断変形の影響は35%程度である.

実験結果を基準した場合,弾性範囲内での剛性は実験値が 115kN/mmに対して解析値は104kN/mmとなり,解析値が11%程度

キーワード ひずみ, せん断応力, 曲げ応力

連絡先 〒468-85032 愛知県名古屋市天白区塩釜口 1-501 名城大学 TEL052-832-1151

図1 解析モデル概形

図2 実験装置外観

図3 ひずみゲージ設置位置

小さくなった.これは縦リブの溶接による熱影響や,初期たわみ などの幾何的要因が影響していると考えられる.

弾性範囲内の同一変位におけるせん断応力分布について検討 した結果を図5に示す.図5より,解析値と比較して安全側に推 定している.最大せん断応力が算出される中立軸位置では,15% 高めに評価している.これは,同一変位における荷重が解析値に 比べ12%大きい値となっているためであると考えられる.全体の 傾向としては,一般的なせん断応力分布がみられた.

次に同一変位における曲げ応力分布について検討した結果を 図6に示す.図6より,平面保持の仮定の通り,概ね直線分布が 得られた.また,今回の実験桁が対称断面であり中立軸が桁高さ の半分に位置することに対して,実験値は中立軸位置でも圧縮の 応力が作用している.

表1にそれぞれの応力から推定される支点反力の結果を示す. 表1に示す平均せん断応力は取得したひずみデータの応力平均 値を平均せん断応力として推定,最大せん断応力は桁高さの半分 の位置を中立軸としてその位置の値により推定,最大曲げ応力は 取得したひずみデータから近似直線を算出し,そこから推定され る最大曲げ応力から推定している.今回の実験で推定された最大 曲げ応力は 66.7MPa である.それぞれを測定値と比較すると,せ ん断応力により推定する場合はどちらも誤差が 1%以内に収まっ ている.曲げ応力による推定では誤差が 3.6%とせん断応力に比 べ誤差が大きい.これは,曲げ応力がせん断応力より分布形状や ひずみ抽出位置の影響を受けているためであると考えられる.今 回の実験において,一部ひずみゲージの欠損により,得られるせ ん断応力のデータが少なかったため,平均せん断応力による推定 に関してはやや信頼性に欠けていて,今後検討が必要である.

5. まとめ

今回のような対称断面かつ単純な載荷条件のもとでひずみ データを取得した結果,弾性範囲内においてせん断応力は曲げ応 力に比べ作用力を適切に反映できているため高い精度で反力を 推定できる.しかし,実際の支点反力に対して推定支点反力がど の程度の誤差であれば,推定できているといえるかについては今 後検討が必要である.

参考文献

日本橋梁建設協会:「熊本地震橋梁被害調査報告書」, 2016.10.

 川上峻幸,渡辺孝一:鋼桁のひずみ測定による桁の応 力推定精度に関する実験的検討,土木学会中部支部 研究発表会概要,2020.3.5.

図 6 曲げ応力分布(16%位置)

表1 推定支点反力(kN)

	測定値	平均せん断 応力	最大せん断 応力	最大曲げ 応力
実験値	115.2	115.7	116.2	119.3
解析值	101.3	98.9	101.3	103.0

(δ=1.95mm 時)