合成2主桁橋のRC床版定点移動疲労載荷試験

(株)駒井ハルテック 正会員

○佐藤悠樹,橘

早稲田大学 正会員 佐藤靖彦,小野 潔,竹田京子

長岡技術科学大学 正会員

宮下 剛, 高橋誠汰

国立技術政策総合研究所 正会員

白戸真人

1. 研究背景および目的

震災時に鋼桁に損傷を受けた橋梁で、かつ RC 床 版が疲労損傷している橋梁の車両通行の可否を判断 するのに困難な事例がある. そのため、床版が損傷 した状態においても, 床版と主桁の合成効果を期待 できるかどうかを把握する必要がある. そこで, 別 途報告する 1/2 スケールの合成 2 主桁橋(以下,試 験体 A1) の 3 点曲げ載荷試験を行い, 構造システム としての限界状態の把握する. 試験体作製にあたっ て RC 床版を有する鈑桁試験体(2 主桁)の床版の 損傷状態を再現する必要があるため、RC 床版の多 点移動繰り返し載荷による疲労試験(以下,疲労試 験)を実施した.本論文では、載荷プログラムの妥 当性を確認するため RC 床版のみの試験体(試験体 B) で疲労試験を行い、その後、試験体 A1 にて疲労 試験を行った結果について報告する.

2. 試験体概要

図1に試験体概要図を示す. 支間長は試験体A1を 7 m, 試験体Bを3.5 mとし, 床版支間はそれぞれ1.5m とした. 床版厚は、H24道示ならびに、床版配筋の 施工性も考慮して、170 mmとした.

主鉄筋は、T荷重に対する設計曲げモーメントか ら,鉄筋の許容応力度が120 N/mm²程度になるよう に設定し, D16@100 mmで配置した. 配力鉄筋は, 床版劣化の再現を目的とし, ひび割れが発生しやす くなるように、既往研究!)ならびにS39 道示にもと づいて,主鉄筋の25 %の鉄筋比となるD13@250 mm で配置した. また, コンクリートの設計基準強度は 27 N/mm²とした. 試験体の支持条件は試験体Bを4 辺単純支持とし,試験体A1は床版を主桁と端横桁に よる4辺支持,試験体本体を単純支持とした.

3. 載荷試験概要

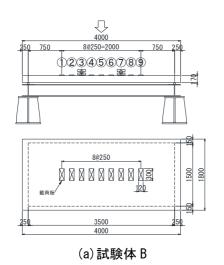
RC 床版に導入する疲労損傷の形態は、比較的交

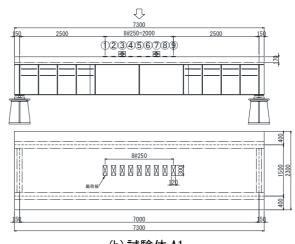
通量が多い既設橋で多くみられる床版下面の亀甲 状の曲げひび割れとした. このため, 文献1)を参考 にしながら、図1に示すように、載荷梁直下の載荷 点をSTEP1からSTEP10で移動させることとした。ま た, 載荷荷重および載荷回数は, 各載荷位置におけ るせん断力と曲げモーメントの比率を考慮し,面部 材としての鉄筋コンクリートスラブの設計押抜き せん断疲労耐力 $(V_{rpd})^2$ 以下となるように設定した. 各STEPの載荷荷重は、表1に示す値とし、表中の丸 数字は、図1の載荷位置に対応している.

載荷に際して、はじめに各STEPの各載荷位置で静 的載荷を行った後、載荷周波数を5 Hzとして、10万 回の繰り返し載荷を2サイクル実施した. 試験状況 を図2に示す.

4. 実験結果と考察

図3に床版下面のひび割れ図を示す. 図3 (a)より, 床版下面全体に亀甲状のひび割れが発生している ことから,疲労試験における載荷プログラムの妥当 性を確認することができ,試験体A1においても同様 なひび割れが発生すると判断した.


疲労試験終了時におけるにひび割れ幅は、試験体 Bで最大2.2 mm, 試験体A1で最大0.1 mmであった. 試験体A1の方が小さい値を示した要因は, 主桁によ る拘束により、RC床版のたわみが抑制されたためだ と考えられる.


5. まとめ

本研究では、道路橋示方書の改定を受け、橋梁の 構造システムとしての限界状態の把握に資する研 究として、合成2主桁試験体の3点曲げ載荷試験を行 うにあたり、RC床版にひび割れが発生した状況を再 現するための、定点移動疲労試験を実施した. その 結果, 既設橋で多く見られる床版下面に亀甲状のひ び割れを再現することが確認できた.

キーワード RC 床版, ひび割れ, 定点移動疲労載荷試験

連絡先 〒110-8547 東京都台東区上野 1-19-10 (株)駒井ハルテック 東京設計課 TEL03-3836-2321

(b) 試験体 A1

図1 試験体概要図

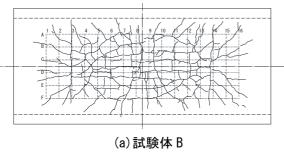
表1 各載荷ステップと載荷荷重

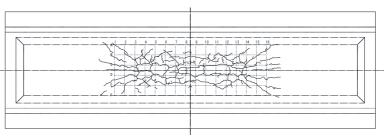
(a)試験体 B

		各載荷位置の荷重 (kN)		
載荷STEP	載荷位置	1サイクル目	2サイクル目	
STEP1	19	160	176	
STEP2	28	130	150	
STEP3	37	95	114	
STEP4	46	80	100	
STEP5	46	80	100	
STEP6	37	95	114	
STEP7	28	130	150	
STEP8	19	160	176	
011 / 5 : 0 / 2 // 6 / 2 // 6 / 2 // 2 // 4 // 4 //				

2サイクル目終了後、⑤位置で400kNまで載荷

(b)試験体 A1


		各載荷位置の荷重(kN)	
載荷STEP	載荷位置	1サイクル目	2サイクル目
STEP1	19	160	264
STEP2	28	130	224
STEP3	37	95	171
STEP4	46	80	150
STEP5	(5)	70	137
STEP6	5	105	137
STEP7	46	120	150
STEP8	37	143	171
STEP9	28	195	224
STEP10	19	240	264



(a)試験体 B

(b)試験体 A1 図 2 試験状況

(b)試験体 A1

図3 床版下面のひび割れ図

参考文献

- 計法に関する研究,大阪大学博士論文,1984.11.
- 1) 松井繁之: 道路橋コンクリート系床版の疲労と設 2) 土木学会: 2017制定 コンクリート標準示方書 設 計編