極低周波渦電流検査による疲労き裂の検出

1. はじめに

鋼橋では,鋼鉄道橋や重交通路線において,疲労き裂 の発生が数多く報告されている.鋼橋の点検で塗膜割 れを発見した場合,塗膜を除去して磁粉探傷試験によ って疲労き裂の発生を確認する必要があるが,塗膜割 れのみでき裂が発生していない場合もあり,塗膜の上 からのき裂の発生を評価できる方法が求められている.

本研究では、図-1 に示す極低周波渦電流検査(以下, ELECT)による疲労き裂の検出を試みた. ELECT は、1 ~100Hz 程度の極低周波の印加磁場を用いた鋼板の減 肉板厚を測定する方法として開発された¹⁾. この方法で は、低周波磁場を印加して鋼部材深部まで渦電流を発 生させ、その磁場を高感度の AMR センサ(Anisotropic Magneto Resistive Sensor)で検出している. また、標識柱・ 照明柱の地際下(40mm 程度)の鋼管部の腐食の検出のた めに、30 度傾けた磁気センサが 25mm 離れて 2 つ設け られたプローブが開発されている. 本研究では、地際下 の鋼管腐食用に開発されたプローブを用いて、疲労き 裂を検出する.

2. 極低周波渦電流検査(ELECT)

(1) ELECT の概要

ELECT では, AMR センサで検波された印加磁場に対 する位相遅れと磁気強度を計測している. 複数の周波 数(本研究では, 1, 3, 6, 8, 10Hz)に対して得られた磁 関西大学 学生員 〇大西 泰生,正会員 石川 敏之 岡山大学 塚田 啓二

気強度と位相遅れを複素平面上にプロットして磁気ス ペクトルが得られる.図-2に、健全状態の厚さ12mm の鋼板(SM490Y)と、その鋼板を突き合せた場合に得ら れた磁気スペクトルの一例を示す.図では、1Hzの結果 が原点となる様に補正している.この図に示す様に、 1Hzと10Hzの磁気強度の差が、健全部と突合せ部で大 きく異なることがわかる.この磁気強度の差は、標識 柱・照明柱の地際下の腐食の検出に用いられているが、 疲労き裂の検出へも利用できる.

(2) 突合せ部からの距離の影響

突合せ部試験体の磁気強度の差 Z と突合せ部からの 距離の関係を図-3 に示す.この図の縦軸は,健全部の 1Hz と 10Hz の磁気強度の差 Z₀で無次元化している.た だし,Z/Z₀は磁気強度差の比を示しているが,その値が 板厚の減少量や疲労き裂の深さを表しているわけでは ないことに注意を要する.図-3 から,突合せ部から 40mm 程度離れた位置においても Z/Z₀が低下しており, 突合せ部から離れた位置でも,ELECT で検出できてい ることがわかる.

3. 面外ガセット溶接継手の疲労試験

本研究では、図-4 に示す面外ガセット溶接継手試験 体を用いた板曲げ疲労試験を実施し、溶接止端に疲労 き裂を発生させた.面外ガセット溶接継手は板厚 12mm, 幅 200mmの主板(SM490Y)に、板厚 12mm,高さ 100mm

キーワード 疲労き裂,極低周波渦電流,磁気スペクトル 連絡先 〒564-8680 大阪府吹田市山手町 3-3-35 TEL.06-6368-0926 のガセットプレート(SM490Y)が、下向きで半自動 CO₂ ガスシールドアーク溶接されている.疲労寿命の定義 は、まわし溶接部止端に貼付した ϕ 0.05mm の銅線の断 線から検出した疲労き裂を N_{toe},まわし溶接部止端から 発生した疲労き裂が主板に進展した段階を N_b、疲労き 裂が溶接止端部から 10mm 離れた位置に到達した段階 を N₁₀ とした.板曲げ疲労試験は、応力範囲 $\Delta \sigma$ = 152N/mm²(応力比 R=-1)で実施した.一定の繰返し回 数毎に、面外ガセット溶接継手の表裏面から ELECT で 計測した.き裂からの距離による磁気強度差の変化を 確認するために、止端から 10mm 間隔で計測した.

試験開始前, N_{toe}, N_b, N₁₀に対する, Z/Z₀と溶接止端 からの距離の関係を図-5に示す.この図より,溶接止端 からの距離が0の場合,試験開始前の段階でZ/Z₀=1.3と なっているが,これは溶接止端部は,溶着金属により鋼 板の一般部と比べて鋼の体積が多くなっているためで ある.図-5から,疲労き裂の進展に伴い,Z/Z₀の値が低 下していることが分かる.試験開始前, N_{toe}, N_b, N₁₀の 際のZ/Z₀の分布の違いにより,疲労き裂が検出できる と考える.次に,溶接止端部から10mmの位置のZ/Z₀ と繰返し回数の関係を図-6に示す.この図から,疲労 き裂の進展に伴い,Z/Z₀の値が低下していることがわか る.したがって,溶接止端から10mmの位置に着目し て,き裂が小さな段階から検知できる可能性がある.

溶接止端の裏側から計測した, 試験開始前, N_{toe} , N_b , N_{10} に対する, Z/Z_0 と溶接止端からの距離の関係を図-7 に示す.この図より, 疲労き裂が N_{10} まで進展した段階 で Z/Z_0 の分布が変化しているため, N_{10} 程度(板厚の8割 まで疲労き裂が進展)まで進展した疲労き裂であれば, ELECT によってき裂の検知が行える可能性がある.

図-4 面外ガセット試験体(単位:mm)

4. まとめ

本研究では、極低周波数渦電流検査を用いた疲労き 裂の検出に関する基礎的研究として、板曲げ疲労試験 によって面外ガセット溶接継手に発生するき裂の検知 を試みた.本研究で得られた主な結果を以下に示す.

- 疲労き裂が発生することで、ELECT で計測した磁気強度差の分布が変化した.また、溶接止端から 10mm 程度の位置の磁気強度差を用いて、疲労き裂の発生を検知できる可能性を示した.
- 板厚の 8 割程度まで進展した疲労き裂に対して、
 ELECT によって鋼板の裏面からき裂が検知できる
 可能性を示した.
- 謝辞:本研究は,国土交通省平成31年度「道路政策の 質の向上に資する技術研究開発」の助成を受けて 実施した.ここに謝意を示す.

参考文献

 K. Tsukada, T. Tomioka, S. Wakabayashi, K. Sakai, and T. Kiwa: Magnetic Detection of Steel Corrosion at a Buried Position Near the Ground Level Using a Magnetic Resistance Sensor, IEEE Transactions on Magnettics, Vol. 54, No. 11, 2018.

図-7 試験体裏面からの計測結果