超弾性合金を用いた橋脚の繰り返し載荷実験

宇都宮大学	学生員	○ 藤岡光	正会員
宇都宮大学	学生員	山口敬也	正会員
HRC 研究所	フェロー会員	中島章典	
オリエンタル白石株式会社	正会員	浦川洋介	正会員

はじめに 1.

1995年に発生した兵庫県南部地震以来, 耐震設計法は震 度法に代わり地震時保有水平耐力法が主流となった. 地震 時保有水平耐力法とは、塑性ヒンジ部で地震エネルギーを 吸収し、損傷を塑性ヒンジ部に限定することによって予期 せぬ破壊モードを回避する耐震設計法である. 地震時保有 水平耐力法によって耐震設計された橋梁は2016年に発生し た熊本地震で橋梁の崩壊を免れるなど、一定の成果が示さ れた.しかし,橋脚基部が塑性ヒンジ化することによって 生じた残留変位等によって, 地震後速やかに橋梁の機能回 復を行うことができない事例があった¹⁾.このため,地震 後に生じる残留変位は依然として課題である.

一方,塑性変形後に荷重を除荷しても元の形状へと復元 する超弾性特性を有する超弾性合金(Super-Elastic Alloy 以下, SEA と呼ぶ)が近年開発されている.この SEA を RC 橋脚の主鉄筋の一部として用いることで, SEA の超弾 性特性によって橋脚の残留変位の低減が期待できる. そこ で、本研究では橋脚の塑性ヒンジ部に SEA を用いた橋脚供 試体に対して繰り返し載荷実験を行い、橋脚供試体の曲げ 挙動を把握するとともに残留変位低減の有効性を検証した.

繰り返し載荷実験 2.

(1)供試体

本研究では,SEA を有する橋脚の曲げ挙動を把握するた めに3体の橋脚供試体を作製した.作製した供試体は、従 来型 RC 橋脚(以下, RC 橋脚), 丸鋼のように表面に凹凸 が無い SEA(SEA 丸棒)を用いた橋脚(以下,SEA 丸棒 橋脚),金属表面にねじ切り加工を施した SEA (SEA ねじ 棒)を用いた橋脚(SEA ねじ棒橋脚)の3体である.

橋脚供試体の側面図と断面図を図-1に示す.いずれの供 試体も直径 250mm の円形断面であり, 有効高さ 800mm, せん断スパン比は 3.20 である. 軸方向鉄筋と SEA は断面 に対して円状に等間隔で8本配置した. 塑性ヒンジ部の軸 方向鉄筋の直径について, RC 橋脚では D13 の公称直径は 12.7mm, SEA 丸棒の計測直径は 12.4mm, SEA ねじ棒の有 効直径は 13.0mm であり, 軸方向鉄筋比はそれぞれ 2.06%, 1.97%, 2.16%となる. 塑性ヒンジ長は道路橋示方書²⁾に基 づいてそれぞれ 120mm, 114mm, 119mm と算出された.帯 鉄筋はいずれの供試体も塑性ヒンジ部で 60mm 間隔,それ より上部では 70mm 間隔で配置し, 塑性ヒンジ部の帯鉄筋 比は 1.09% である. SEA の長さは 300mm で, 両端からそ れぞれ 25mm の長さにねじ切加工を施した. 同様に鉄筋に も端部にねじ切加工を施し,鉄筋と SEA を高ナットで接合 した.

また, D13 と SEA 丸棒および SEA ねじ棒の引張強度試 験によって得られた応力~ひずみ関係の一例を図-2に示す. 引張強度試験より D13(SD295)の降伏強度が 367N/mm², SEA 丸棒および SEA ねじ棒の見かけ上の降伏強度がそれ ぞれ 192N/mm², 186N/mm² であった. ここで見かけ上の 降伏強度とは、図-2 に示す SEA の応力~ひずみ関係にお いて,一次勾配から二次勾配に変化するときの応力であり,

藤倉修一

Nguyen Minh Hai

ここでは一次勾配と二次勾配を示す直線の交点における応 力とした.弾性係数は D13(SD295), SEA 丸棒, SEA ねじ 棒でそれぞれ 186kN/mm², 37.3kN/mm², 35.0kN/mm² で あった. SEA は1本ずつ特性に若干違いがあるので,1本ず つ引張試験を行っており、上記の値はその平均値である.図 -2 より SEA の降伏強度は D13 の半分程度であるが, SEA には塑性後でも除荷するとひずみが変形前の状態に戻る超 弾性特性が確認できる. 橋脚躯体部および柱頭部には早強 コンクリートを打設し, 圧縮強度は 50.5N/mm² であった. フーチング部には普通コンクリートを打設し、圧縮強度は 31.0N/mm² であった.

実験方法 (2)

本実験では、反力壁に固定した油圧ジャッキを用いて橋 脚供試体の柱頭部に水平力を正負交番に与えた.載荷方向 は図-1 に示す NS 方向で,S 面が圧縮を受ける場合を正載 荷,N面が圧縮を受ける場合を負載荷とした.載荷サイク ルを図-3に示す.載荷は一定振幅変位漸増方式とし各変位 振幅はドリフトを基準に定めた. ここにドリフトとは橋脚 の有効高さに対する水平変位の比である.載荷サイクルは ドリフト 0.25%(2mm) 載荷を 1 回, ドリフト 0.5%(4mm) 載荷を3回, その後は各変位振幅をドリフト 0.5%(4mm) ず つ増分させ載荷を行った.供試体の柱頭部の上に 23.0kN 分 の鋼板の錘を載せることにより一定軸力の上載荷重を与え

Key Words: 超弾性合金,橋脚の繰り返し載荷実験,残留変位,塑性ヒンジ

^{〒 321-8585} 宇都宮市陽東 7-1-2 宇都宮大学地域デザイン科学部社会基盤デザイン学科 Tel.028-689-6227

た. このとき橋脚断面に生じる軸応力は 0.47N/mm² であ る. 計測項目については,水平荷重をロードセルで,載荷 位置での水平変位を巻込型変位計で、軸方向鉄筋のひずみ をひずみゲージで測定した.

実験結果 3.

耐力および変形性能 (1)

図-4 に RC 橋脚の水平力載荷位置における水平荷重~水 平変位の履歴曲線を示す.SEA 丸棒橋脚と SEA ねじ棒橋 脚についても同様に履歴曲線をそれぞれ図-5,6に示す.

まず,各供試体の載荷終了時の状況について確認する. RC 橋脚では正載荷側および負載荷側ともにドリフト 10%載荷 時に軸方向鉄筋が破断したため載荷を終了した. SEA 丸棒 橋脚では正載荷側においてドリフト 5%載荷時に SEA が1 本破断したため正載荷を行わないこととし、それ以降は負 載荷側のみで繰返し載荷を行った. 負載荷側では水平変位が 117mm(ドリフト 14.6%)で SEA が破断したため載荷を 終了した. SEA ねじ棒橋脚では正載荷側および負載荷側と もにドリフト3%載荷時にSEAが1本ずつ破断したため載 荷を終了した. SEA 丸棒は金属の粒界における破断, SEA ねじ棒は棒の付着に起因する応力集中による破断と考えら れるが、SEA棒を取り出し、調査する必要がある. 図-4よ り, RC 橋脚の最大荷重は正載荷時で 42.8kN, 負載荷時で 43.6kN であった. ドリフト 4.5% 載荷時に最大荷重付近で 安定していた水平荷重が低下し始めた後に、急激に水平荷 重が低下した.図-5より,SEA 丸棒橋脚の最大荷重は正載 荷時で 29.4kN, 負載荷時で 29.8kN であった. 負載荷側で はドリフト 10%載荷程度まで水平荷重が最大荷重付近で安 定し続け、大幅な水平荷重の低下は確認されなかった.図 -6より, SEA ねじ棒橋脚の最大荷重は正載荷時で 29.1kN, 負載荷時で 29.5kN であった.

図-7は3体の橋脚供試体における履歴曲線の包絡線の比 較である.包絡線とは図-4,5に示した履歴曲線の各変位 振幅の1サイクル目における正載荷側および負載荷側の最 大荷重をプロットした図である.SEA を塑性ヒンジ部に用 いた橋脚は RC 橋脚に比べて,最大荷重が約 30%小さかっ た. これは SEA の見かけ上の降伏強度が D13 鉄筋の降伏 | 強度の半分程度しかないことが原因である.前述のとおり, RC橋脚ではドリフト 4.5%載荷以降に水平荷重の低下が確 認されたのに対して,SEA 丸棒橋脚ではドリフト 10%載 荷程度まで水平荷重が最大荷重付近で安定していたことか ら,SEA 丸棒橋脚は RC 橋脚に比べて最大荷重は小さいも ののじん性が向上している. また, 水平荷重が最大荷重の 80%以下に低下したときを終局荷重と定義すると、そのとき の水平荷重は, RC 橋脚では正載荷側および負載荷側ともに 48mm (ドリフト 6%) である. それに対して SEA 丸棒橋 脚は実験終了まで水平荷重が最大荷重の 80%以下にまで低

下しなかった.なお,負載荷時において水平変位が 115mm のときの水平荷重は最大荷重の85%程度であった.以上か ら, RC橋脚に比べて SEA 丸棒橋脚の変形性能が向上して いる.

残留変位 (2)

図-8は残留変位を比較した図であり、各変位振幅に対す る残留変位の関係を示す.残留変位は各変位振幅の1サイク ル目において水平荷重が0のときの載荷位置での変位とし た. 図-8より,同程度の変位振幅を与えた場合の残留変位 は、SEA を用いた橋脚の方が小さい. 例えば、SEA 丸棒橋 脚の SEA が破断する直前の変位振幅で比較する.橋脚の水 平変位が40mm(ドリフト5%)における正載荷側と負載荷 側の残留変位を平均値で比較すると, RC 橋脚では 28.4mm, SEA 丸棒橋脚では 1.4mm となり, SEA 丸棒橋脚の残留変 位は RC 橋脚よりも約 95%小さい.このドリフト 5%時の SEA 丸棒のひずみを確認すると、ひずみが 17000×10⁻⁶ で あるのに対して、荷重を0に除荷したときのひずみが、ド リフト 5%載荷を始めるときのひずみ 1000×10⁻⁶ に復元し ていることから, SEA の超弾性特性によって残留変位が低 減したと考えられる.以上のことから,SEAを塑性ヒンジ 部に用いた橋脚は残留変位の低減に有効的である.

4. 結論

- 1. SEA を塑性ヒンジ部に用いた橋脚は RC 橋脚に比べて 最大荷重が約 30%小さかったが,SEA 丸棒橋脚ではじ ん性および変形性能の向上が確認された.
- 2. 橋脚の塑性ヒンジ部に SEA を用いることで残留変位の 低減に有効的である.ドリフト 5%載荷時の SEA 丸棒 橋脚では RC 橋脚よりも残留変位が約 95%小さかった.

参考文献

- 1) 大住道生, 星隈順一: 熊本地震により被害を受けた道路橋の 損傷痕に基づく要因分析, 第 20 回性能に基づく橋梁等の耐 震設計に関するシンポジウム講演論文集, pp.121-128, 2017. 日本道路協会:道路橋示方書・同解説, 2017.11.
- 藤倉修一, 忍田祥太, 臼井祐太, Nguyen Minh Hai, 中島章 3)典, 浦川洋介:レベル 2 地震損傷後に修復可能な RC 橋脚の 提案および実験的検証, 土木学会論文集 A1(構造・地震工 学), Vol.75, No.4, I_591-I_601, 2019.