落石防護土堤の捕捉性能に土質材料が与える影響

(株) 構研エンジニアリング	正会員	○保木和弘	正会員	鈴木健太郎
	正会員	高橋浩司	正会員	牛渡裕二
名古屋工業大学	正会員	峯祐貴	正会員	前田健一
土木研究所寒地土木研究所	正会員	寺澤貴裕	正会員	今野久志

1. はじめに

本研究では落石防護土堤¹⁾が有する落石捕捉性能を把 握するための基礎資料収集を目的に,異なる土質材料で造 成した 1/5 ~ 1/4 縮尺の小型土堤模型に対し,静的水平載 荷(静的)実験および重錘衝突(衝撃)実験を実施して,そ の挙動について検討を行った.

2. 実験概要

図1 および表1には、衝撃実験概要図および実験ケー ス一覧を示している.静的・衝撃実験ともに、土堤模型寸 法は高さ 0.5 m、天端幅 0.25 m、法面勾配 1:1.5 である. 静的実験は、重錘に接続した油圧ジャッキにより、土堤 に水平荷重を作用させた.また、衝撃実験は振り子運動 により球体重錘を土堤に衝突させて実施した.重錘は質 量 54 kg、直径 0.318 m で、土堤高さの 3/5 程度の大きさ となっている.

実験ケースは、土堤材料、載荷方法および重錘落下高さ を変化させた全9ケースである.表には高速度カメラに より計測した実測衝突速度も併せて示し、実験結果欄で は、破壊形態(静的)と重錘捕捉の可否(衝撃)を示してい る.また表2には、実験に使用した土堤材料の物性値一 覧を示している.測定項目はそれぞれ、荷重および貫入 量(静的)、高速度カメラによる重錘移動量(衝撃)である.

3. 実験結果

写真1に、実験終了後の土堤外観状況の一例を示す.(a) より、静的実験の非載荷面天端付近にはいずれもひび割 れが生じていることが分かる.S-Sのひび割れは半円形 に連結されており、押抜き破壊により楔土塊が形成され ていることが窺える.C-Sの天端付近のひび割れは重錘 貫入による土堤天端の引張によるものと推察される.G-S は載荷部から押し込まれ、盛り上がった形状を呈してい る.(b)より、衝撃実験の衝突面側に着目すると、最も単 一粒径に近い砂($U_c = 2.15$)で土堤模型を構築したS-I6で は、重錘が衝突箇所の土粒子を飛散させ、押し分けながら 貫入したことが分かる.最も細粒分が多い粘性土($D_{60} =$ 0.03 mm)で構築したC-I6では、重錘貫入に伴う塑性変形 が衝突箇所のみに生じ、周辺は若干の盛り上がりが生じ ている.一方、0~30 mm 級の角礫で粒度分布が良い砕

図1 衝撃実験概要図

<u>表 1</u> 実験ケース一覧(全 9 ケース)									
ケース名	土堤	載荷	落下高	実測速度	実験結果				
	材料	方法	$H(\mathbf{m})$	V(m/s)					
S-S	Frib	静的	-	-	押抜き破壊				
S-I2, S-I6	11.9	衝撃	2,6	7.12, 11.04	捕捉, <mark>通過</mark>				
C-S	¥比//± →	静的	-	-	圧縮変形				
C-I2, C-I6		衝撃	2,6	6.70, 11.29	捕捉,捕捉				
G-S	动石	静的	-	-	押抜き破壊				
G-I2, G-I6	11-11	衝撃	2,6	6.26, 11.24	捕捉, <mark>通過</mark>				

表 2 材料試験結果一覧								
項目	単位	砂	粘性土	砕石				
地盤材料の分類名	-	砂	シルト	礫				
分類記号	-	S	ML	G				
土粒子の密度	g/cm ³	2.58	2.66	2.67				
60%粒径 D ₆₀	mm	0.37	0.03	13.05				
均等係数 Uc	-	2.15	6.21	36.25				
最大乾燥密度 ρ_{dmax}	g/cm ³	1.59	1.37	2.18				
最適含水比 wopt	%	20.8	29.4	5.8				
内部摩擦角 φ	度	36.5	29.8	38.6				
粘着力 C	kN/m ²	-	4.6	-				
平均湿潤密度	g/cm ³	1.56	1.87	1.82				

石 ($U_c = 36.25$) で構築した G-I6 には明瞭な衝突痕が残ら ず、衝突箇所周辺に若干砕石の乱れが確認される程度で あった.なお、いずれのケースにおいても非衝突面側に 変状は確認されていない.

% 10.0 20.4 4.7

平均含水比

写真2に、実験後の載荷断面状況例を示す.載荷断面に は土堤内部の変形状況を計測するために、実験前に削孔 して5~6本の着色した砂を埋設している.(a)より、S-S は載荷部付近の着色砂が椀状に変形しているほか、既往 の実験²⁾と同様に局所化した複数のせん断変形箇所が見

キーワード: 落石防護土堤, 動的挙動, 静的挙動

連絡先:〒065-8510(株)構研エンジニアリング 技術管理部 TEL/FAX 011-780-2811/011-785-1501

写真2 断面の破壊状況

受けられることから,土堤内部にすべりが生じたものと 推察される. C-S は重錘形状に沿った載荷部付近の変形と 着色砂間隔の狭さから,圧縮変形が卓越し,優れた塑性 変形性能を有することを示唆している. G-S は載荷部付近 の着色砂が大きく曲がっていることが分かる. (b)より, S-I6 は C/G-I6 よりも変形が大きいことが分かる. 静的実 験と同様,局所化したせん断変形が複数箇所で認められ, すべりが生じたものと考えられる. C-I6 の全体的な変形 は S-I6 よりも小さく G-I6 よりも大きい. 内部着色砂は衝 突位置近傍のみが変形している. G-I6 は,衝突部および 着色砂に明瞭な変形は認められない.

図2に、静的実験における荷重-貫入量関係を示す.図 より貫入量250~300mm程度までは、いずれも一定の 勾配で上昇後に一定値に落ち着く傾向が認められる.S-S は、ほぼ一定の勾配で最大値となる8kN程度に達した後、 荷重が減少に転じている.C-Sは、S-Sよりも高い剛性勾 配で、8kN程度で荷重増加が減少・停止し、300mm程度 貫入した後に再度荷重が増加した.G-Sは貫入量200mm までほぼ一定の勾配で荷重が増加し、各材料中で最大と

なる 11 kN 程度に達した後,荷重が横ばい・減少に転じている.

図3には、衝撃実験における高速度カメラから算出した 重錘重心軌跡図を示している.また、重錘が非衝突面側 の法肩を通過したケースにおいては、高速度カメラの計 測範囲から外れた分のデータは反映されていない.図よ り、H=2mはいずれも重錘を捕捉した.一方、H=6m ではCのみ重錘を捕捉し、S/Gは重錘が土堤を通過して いる.各ケースの軌跡に着目すると、Sは土堤内に重錘が 貫入しながら拘束圧の小さい土堤表層付近に沿うように 法肩上方へかけ上がる挙動を示す.CはS/Gよりも貫入 量が大きく示されているが、かけ上がらずに鉛直方向に 跳ね上がり、重錘を捕捉した.GはSとほぼ同様の軌跡 を描いているが、貫入量が最も小さく、跳ね上がりなが ら法肩を通過した.

4. まとめ

本研究で得られた知見を以下に示す.

- 静的実験より、粘性土のみ押抜き破壊が生じない結果となった。また、砂に比べて粘性土は塑性変形性能に優れ、砕石は最大耐力が大きい。
- 2) 衝撃実験より、粘性土が落石捕捉性能に最も優れる.
- 落石捕捉性能は最大耐力よりも塑性変形性能に強い 影響を受けると考えられる。

参考文献

- 1) 日本道路協会:落石対策便覧, 2017.12
- 2)保木和弘,鈴木健太郎,高橋浩司,松尾和茂,前田 健一,西弘明:落石防護土堤の静的荷重水平載荷実 験,平成30年度土木学会北海道支部年次技術研究発 表会,A-41,2019.1