鋼I桁橋桁端部における水平荷重作用時の挙動に関する解析的検討

首都大学東京	学生会員	〇石川貫人	首都大学東京	正会員	村越潤
首都大学東京	フェロー会員	野上邦栄	首都大学東京	正会員	岸祐介

1. はじめに

これまでの地震による鋼橋の被害として, I 桁橋では,力の集中する支点部である桁端 部において,支点上垂直補剛材の変形や,主 桁下フランジ・ウェブの変形が確認されてい る.本検討では,既設鋼 I 桁橋の桁端部を対 象として,腐食損傷時の耐荷性能を明らかに することを目的に,その基礎検討として橋 軸・橋軸直角方向の地震荷重(水平荷重)に 対して弾塑性有限変位解析を行い,桁端部の 塑性化,変形挙動について分析を行った.

2. 対象橋梁

対象橋梁としては、年代毎の適用基準によ る橋全体系の構造条件の違いに着目し、昭和 39 年及び平成 14 年改定の道路橋示方書(以 下,それぞれ S39 道示, H14 道示)に基づく, 支間長 30m の単純合成鋼 I 桁を選定した.断 面設計では、当時の標準設計や設計の考え方, 方法を踏まえて再現設計を行い、主桁等の寸 法諸元を決定している¹⁾.図-1 に対象橋梁の 幅員構成と桁配置,主な構造諸元を示す.主 桁の使用鋼材は、S39 道示では SM50A(降伏 点 323MPa),H14 道示では SM490Y(降伏点 355MPa)である.表-1 に適用道示の構造条件 の主な相違点を示す.

3. 解析方法

解析には汎用有限要素解析ソフトウェア MSC.Marc.2018 を使用した.図-2 に解析モデルの概要を示す.本検討 ではピン支持側を対象としている.RC 床版を 8 節点ソリッド要素で,主桁,横桁,対傾構等の鋼部材を 4 節点シ ェル要素でモデル化した.要素サイズはピン支持側の支点部から 2 つ目の垂直補剛材の位置(支点部より 2000mm, 端対傾構,ガセットを含む)までの部分では 25×25mm,その他の部分では 100×100mm を基本とした.鋼材及び コンクリートの材料特性に関して,それぞれ弾性係数を 2.0×10⁵N/mm², 2.65×10⁴N/mm²,ポアソン比を 0.3, 0.2 とした.材料の構成則については,鋼材ではバイリニア型の応力-ひずみ関係(二次勾配は弾性係数の 1/100)とし. コンクリートでは弾性と仮定した.主桁と床版の間はスタッド位置で剛結としている.残留応力や初期たわみ等 の初期不整は考慮していない.

支点部の境界条件は、片方をピン支持、他方をローラー支持とし線支承を想定した.ソールプレートは標準図

キーワード 鋼 I 桁橋,桁端部,地震荷重,水平荷重,耐荷性能 連絡先 〒192-0397 東京都八王子市南大沢 1-1 E-mail:ikkt0305@gmail.com 集より,両モデルともに板厚 22mm としている. なお,H2 道示以降, 耐震上,支承端部の直上の上部構造 ウェブに 1/2 ウェブ高の垂直補剛材 を設置する規定が導入されている が,本検討では S39 道示と同様に設 けていない.

S39 道示, H14 道示を基本とした 2 種類のモデルに対して,上部構造 の質量分布に応じた慣性力を,橋軸 方向にはピン支持側からローラー 支持側にすべての要素に,橋軸直角 方向には G4 桁側から G1 桁側に対 して水平加速度を漸増させ,弧長増 分法により解析を実施した.解析に 際して,地覆を含む RC 床版,主桁 及び 2 次部材の死荷重(単位体積重 量:鋼部材 77kN/m³, RC 床版 24kN/m³)を考慮している.全死荷

重は S39 モデルでは 2149kN, H14 モデルでは 2775kN である.

4. 解析結果

図-3 に,橋軸・橋軸直角方向載荷時の水平荷重 一桁端水平変位関係を,図-4 に水平荷重を上部構 造の自重に乗じる水平震度として表した場合の水 平震度-桁端水平変位関係を示す.ここで,桁端 水平変位とは,ピン支持側桁端部の床版(幅員中 央部の床版下面)の変位である(図-2の黒丸位置). また,表-2 に桁端部に塑性化が発生した時(初期 降伏時)の状況をまとめる.

表-2 各モデルの桁端初期降伏時の状況

解析モデル	載荷方向	初期降伏荷重, 変位	降伏位置	ミーゼス応力コンター図
S39 モデル	橋軸方向	8752kN, 7.9mm (水平震度4.07)	G1~G4桁ピン支 持側ウェブ・下 フランジソール プレート境界部	· · · · · · · · · · · · · · · · · · ·
	橋軸直角方向	2816kN, 5.9mm (水平震度1.31)	G1~G4桁端補剛 材下端	323 (鋼材降伏) 0 (N/mm ²)
H14 モデル	橋軸方向	22928kN, 12.9mm (水平震度8.32)	G1~G4桁ピン支 持側ウェブ・下 フランジソール プレート境界部	
	橋軸直角方向	3596kN, 8.3mm (水平震度1.31)	G1~G4桁端補剛 材下端	355 (鋼材降伏) 0 (N/mm ²)

橋軸方向載荷の場合,両モデルともに G1~G4 桁ソールプレート前面近傍の下フランジ・ウェブで初期降伏が みられ,降伏域が下フランジ,ウェブともに支間中央側に増加していきつつ,ウェブの端補剛材よりも桁端側の ウェブの座屈に伴い水平変位が増加し,勾配はなだらかに変化した.これに対して,H14 モデルでは,初期降伏 荷重は S39 モデルに対して約 2.6 倍となっている.これは,桁端下フランジの部材断面が,S39 モデル(4560mm²) では H14 モデル (G1,G4 桁:15370mm²,G2,G3 桁:13160mm²)と比較して小さいことが主な理由と考えられ る. 橋軸直角方向載荷の場合,両モデルともに G1~G4 桁端補剛材下端で初期降伏し,その後,端対傾構斜材が 降伏する時点以降,水平変位が増加し,勾配はなだらかに変化した.初期降伏荷重は,H14 モデルでは S39 モデ ルに対して約 1.3 倍となっている.両モデルともに端補剛材,端対傾構の断面は同様としており,橋軸方向と比較 して降伏荷重の差が相対的に小さくなったと考えられる.桁端の塑性化の進行過程(初期降伏部位やその後の荷 重一変位挙動等)は,S39,H14両モデルともに概ね同じ傾向であった.また,水平震度(図-4)については,橋 軸方向では H14 モデル(8.3)は S39 モデル(4.1)の約 2.0 倍で,橋軸直角方向では両モデルともに 1.3 であった. 参考文献1)村越ほか:既設鋼1桁道路橋における溶接接手部の疲労耐久性に関する考察,構造工学論文集,Vol.66A, 2020.3.