ウェブガセット溶接継手部の疲労強度に及ぼす面外変形の影響

関西大学	学生員	○寺西	大雅
	1		/ * J PA

1. はじめに

既報では1964年に架設され2005年に撤去された阪 神高速道路環状線の旧湊町ランプの入路橋から試験体 を切り出して疲労試験を行い,疲労上の弱点部の疲労 挙動や疲労強度特性について検討した¹⁾.

本研究では G3 試験体の疲労試験を行い, 既報の試験 結果と比較して, ウェブガセット溶接継手部の疲労強 度に及ぼす面外変形の影響を検討する.

2. 実験方法

(1) 試験体

図1にG3試験体の形状と寸法,表1に3体の試験 体のガセットの形状と寸法の比較を示す.G1,G3試験 体ではガセットが取り付けられている面を表側とする.

図1 G3 試験体の形状と寸法

試験体 比較項目	G1	G2	G3					
ガセットの配置	片側	両側	片側					
大きさ(ガセット)	360× <mark>680</mark> ×9	340×400×9(片側のみ)	260×660×9					
ガセットの形状	<u></u>	- 400 R=30	660 R=30					

表1 G1. G2. G3 試験体の形状・寸法比較

(2) 面外変形測定方法

試験体のウェブ裏側の両側にあるガセット間に糸を 張り,電子ノギスを用いて糸とウェブ間の距離を各点3 回ずつ測定した.両端点を結んだ直線を基準線に設定 し,基準線から測定点までの距離を面外変形とした.

(3) 応力測定方法

キーワード 面外変形,疲労強度,ウェブガセット 連絡先 〒564-8680 大阪府吹田市山手町 3-3-35 関西大学環境都市工学部 TEL:06-6368-1111(内線)6506

非会員	高橋	祐樹	正会員	坂野	昌弘
	(株)阪神高	速 道路	正会員	高田	佳彦

図 2 にひずみゲージの貼り付け位置を示す. 下フラ ンジの挙動を把握するためにウェブガセット端部直下 の下フランジ側面と下フランジ中央側面に 1 軸ゲージ を,また,ウェブガセット近傍の面外変形と応力分布を 把握するために1軸ゲージと3軸ゲージを貼付した.

(4) 載荷方法

両端支持の 2 点載荷で試験を行った.静的載荷試験 の荷重範囲は ΔP =100kN(P=20kN~120kN),疲労試験 の荷重範囲は ΔP =200kN(P=100kN~300kN),荷重繰 返し速度は 3Hz とした.

3. 実験結果

(1) 面外変形測定結果

図 3 に面外変形測定結果を示す.初期状態では裏側 に最大 6mm 程度変形しており,最大荷重 300kN で面 外変形はほぼ消失している.この図から,ガセット取り 付け部には曲げ応力に加え,面外変形による引張応力 が付加されていることがわかる.

(2) 静的載荷試驗結果

図 4 に直応力の長手方向分布を示す.ウェブと下フ ランジにおいて表側の方が裏側より大きい応力が生じ ている.これは前述の面外変形が原因と考えられる.

(3) 疲労試験結果

図5に溶接部近傍のひずみ変化,図6にS-N線図²⁾, 写真1,2にMT結果を示す.載荷回数N=134万回で両 側の溶接止端でき裂の発生を確認し,N=238万回で東 側のき裂が裏側に貫通していることを確認した.き裂 貫通寿命で定義するとG3試験体のウェブガセット溶 接継手部の疲労強度等級はG等級であった.

図5 溶接部近傍のひずみの変化

図 6 G1, G2, G3 試験体 S-N 線(計算応力)

写真1 発見時のき裂(左:西側表 右:東側表)

写真2 貫通時のき裂(左:東側表 右:東側裏)

(4) 面外変形の影響

図7にガセット近傍の応力分布を示す.G3試験体は G1,G2と比較すると,表側の応力が裏側の3~5倍と非 常に大きいことがわかる.これは前述したように面外 変形の影響であると考えられる.

図7 G1, G2, G3 試験体桁ガセット近傍応力分布

4. まとめ

ウェブガセット溶接継手部の疲労強度はガセット周 辺のウェブの面外変形に大きく影響を受けることが明 らかとなった.

参考文献

- 山岡大輔,高田佳彦,坂野昌弘:高速道路入路橋から採取した鋼桁試験体の疲労挙動,鋼構造年次論 文報告集,第17巻,pp.359-366,2009.
- 2) 日本道路協会:鋼道路橋の疲労設計指針,2002.