高力スタッドボルト接合に関するボルト軸力の基礎的研究

日本ファブテック 正会員 〇山本 佑大,彭 雪,奥村 学 大阪市立大学 正会員 山口 隆司

1. はじめに

近年,経年劣化による既設トラス橋の閉断面部材を 対象とした片面当て板補修・補強が増加している.著者 らは孔あけが不要の高力スタッドボルト(以下:スタッ ド)による片面当て板工法の適用を検討している.既設 部材の板厚が9~12mmの場合,スタッドに高軸力を導 入すると,母材のせん断降伏が懸念される.

そこで、スタッドの導入軸力を検討するため、母材の せん断降伏が考えられる板厚を対象に引張試験と FEM 解析を行った.

2. 試験方法

図-1に試験体形状,表-1に試験体の構造諸元を示す. 試験体は100×100 mm の鋼板(SM400)にスタッド(F8T) を溶植したものである.試験ケースは,スタッド径(M16, M20)と母材厚(9,12 mm)の計4ケースである.

引張試験の実施状況を写真-1 に示す.計測項目は引 張荷重 P, スタッド軸ひずみ S, 母材ひずみ B である.

3. 試験結果

表-2 に試験結果のまとめを示す. 母材のせん断破断 荷重の推定値 $P_{\rm BU}$ は, せん断抵抗面積 ($\pi \cdot D \cdot t$) と鋼 材の引張強さ/ $\sqrt{3}$ の積より算出した.

試験体の破断状況を写真-2 に示す. S20-t9 は母材が 完全にせん断破断 (Type1) した. S20-t12 はせん断破断 が進行してから板厚の中ほどで剥離破壊 (Type2) した. 両者とも,母材表面とせん断抵抗面との角度は約 75° であった.破断荷重は,母材のせん断破断荷重の推定値 に比べて 1.0~1.2 倍であった. S16-t12 の破断荷重の推 定値は,スタッドの引張破断荷重 P_{SU}の方が P_{BU}より約 7%低いが,引張試験の破断モードは推定値の大小関係 と異なり母材のせん断破断 Type2 であった.

図-2 に荷重とスタッド軸ひずみ S の関係を示す.縦軸は引張荷重 P をスタッド破断荷重 P_{SU}で無次元化したもので、横軸はスタッド軸ひずみ ε を降伏ひずみ ε_yで無次元化したものである.全てのケースで、荷重とひずみは線形挙動を示している.母材破断時において、S16-t12 の引張荷重は、スタッド破断荷重まで到達しているが、軸ひずみは降伏ひずみまで達していないこと

表-1 試験体諸元

A# 4€	高力 スタッド (F8T)	母材 (SM400)			
武 映 休 夕		板厚t	降伏点	引張強さ	
座泊		(mm)	(N/mm^2)	(N/mm^2)	
S16-t9	MIG	9	301	455	
S16-t12	MIIO	12	313	439	
S20-t9		9	301	455	
S20-t12	M20	12	313	439	
% S20-t19		19	272	434	

※既往研究1)の試験体

図-1 試験体形状(単位:mm)

写真-1 引張試験実施状況

表-2 試験結果のまとめ

試験体名		破断荷重		破断荷重の推定値(kN)				77th Nation
		(kN)		母材破断	<u></u>	スタッド破断	00	100町 エード
			平均①	P BU 2	0/2	P_{SU} ③	0/0	- L - I
S16-t9	1	145.5	144.2	119	1.21	143	1.01	E1++
	2	144.5						Type2
	3	142.7						
S16-t12	1	159.6	157.9	153	1.03	143	1.10	E1++
	2	155						母初 Type?
	3	159.2						Type2
S20-t9	1	156.2	164.5	149	1.10	222	0.74	51++
	2	166.2						Type1
	3	171.0						Typer
S20-t12	1	198.2	190.0	191	0.99	222	0.86	母材
	2	182.0						Type1
	3	189.7						Type2
S20-t19	1	224.5	222.1	299	0.74	222	1.00	2 h 18
	2	219.7						∧ ⁄ ッ ン ト わじ ゴ(
	3	220.0						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

写真-2 試験体の破断状況

キーワード 高力スタッドボルト,ボルト軸力,引張試験,せん断降伏,スタッド溶接
連絡先 〒550-0001 大阪市西区土佐堀 1-3-7 肥後橋シミズビル 11 階 TEL:06-7730-9120

から,母材のせん断降伏が先行し破断に至った.母材表面とせん断抵抗面の角度 75°を考慮した母材のせん断破断荷重の推定値は 126.5 kN となり,スタッドの引張破断荷重の推定値に比べて約 12%低くなる.よって,破断モードの判定が引張試験と整合する.

図-3 に荷重とスタッド直下の母材ひずみ Bの関係を示す. 縦軸は引張荷重 Pを母材破断荷重 P_{BU} で無次元化したものである.引張荷重 P/P_{BU} が約 0.4 で,スタッド直下の母材裏面が降伏ひずみに到達している.これは,引張荷重に伴う母材の板曲げによる面外変形の影響と考えられる.母材のせん断降伏時 (P/P_{BU} =0.7)では,圧縮ひずみが $\varepsilon/\varepsilon_y$ = 2~3 程度となった.

4. FEM 解析結果

1-45

引張試験時の母材応力分布を FEM 解析により検証した. 解析モデルは,母材厚が 12 mm,スタッド径を M20 とした.当て板表面を固定し,スタッドに引張荷重 Pを載荷した.母材の降伏応力は $\sigma_v=272$ N/mm² とした.

図-4 に Mises 応力コンター図を示す. P_{By} は母材のせ ん断降伏荷重の推定値である. せん断降伏時 (P_{By})は, スタッド側の母材表面に局部的な降伏が見られるが, スタッド直下の母材裏面応力は約 $0.7\sigma_y$ で降伏していな い. 一方, せん断破断時 ($1.5P_{By}$) はせん断抵抗面の全 域で降伏し,母材裏面の圧縮降伏も進行している.

引張試験と解析結果より,高力スタッドのボルト軸 カ N は,母材のせん断荷重による軸力とスタッドねじ 部の引張荷重による軸力の小さい方とする.

 $N_B = \tau_y \cdot \pi \cdot (D - t \cdot tan 15^\circ) \cdot t/\sin 75^\circ$ $N_S = \alpha \cdot \sigma_{yk} \cdot A_e$ ここで、 $N_{B:} 母材のせん断荷重による軸力(抵抗面 75^\circ)$ $N_{S:} スタッドねじ部の引張荷重による軸力$ $\tau_y: 母材のせん断降伏強度の特性値, D: スタッド径$ $t: 母材厚, \alpha: 降伏点に対する比率$ $\sigma_{yk}: スタッドの引張降伏強度の特性値$ $A_e: ねじ部の有効断面積$

5. まとめ

高力スタッドのボルト軸力 N は、母材のせん断荷重 による軸力とスタッドの引張荷重による軸力の小さい 方とする.今後、母材のせん断降伏が先行する母材厚で すべり試験を実施し、継手性能を検証する予定である.

謝辞 引張試験は、ダイヘンスタッド 石井 博幸氏にご協力 を賜りました.ここに記して感謝の意を表します.

参考文献 1) 彭,奥村,長沼,山本:高力スタッドボルトを 用いた片面当て板工法の開発と実橋への適用,日本構造物診 断技術協会,第31回構造物の診断と補修に関する技術・研究 発表論文集, PP.47~54, 2019.10