塩化物による耐候性鋼異常腐食部のさび層構造・組成分布

岐阜大学院 学生会員 〇馬場 梨瑛 岐阜大学 正会員 木下 幸治 琉球大学・岐阜大学 正会員 蓮池 里菜

1. 背景・目的

表面に緻密な保護性さびを形成することで腐食を抑 制し,無塗装で使用可能な耐候性鋼材は,現在多くの橋 梁で使用されており,そのさび層による保護性機構に ついて多くの研究がなされてきた.一方で,飛来塩分量 の多い沿岸部や,塩化物系凍結防止剤が使用される地 域では,保護性さび層が形成されず,異常腐食が発生し ている¹⁾.異常腐食が発生した場合には,素地調整およ び塩分の除去を行った上で塗装補修が行われている²⁾ が,耐候性鋼材に生じた異常腐食部では,素地調整が普 通鋼より困難であり³⁾,再腐食を生じた事例も確認され ている等,補修方法が大きな課題となっている.しかし, この耐候性鋼異常腐食さびの生成機構を詳細に調べた 報告は少なく,塩化物環境下での普通鋼と耐候性鋼の さび層構造・組成分布を示すデータが不足している.

そこで、本研究では、普通鋼、耐候性鋼の塩化物環境 下での異常腐食さびのさび層構造・組成分布を調べる ことを目的とし、腐食促進試験を実施し、ラマンイメー ジング及び電子線マイクロアナライザ(EPMA)を用い たさび組成及び元素の分布状態を可視化した.

2. 試験体及び腐食試験概要

試験体は SM490A (JIS G3106) の普通鋼 (50mm× 50mm×12mm) と, SMA400AW (JIS G3114) の耐候性 鋼 (50mm×50mm×11mm) である.使用鋼材の化学成 分をそれぞれ表-1 に示す.試験は,試験体を3%濃度の 塩化ナトリウム水溶液へ1分間浸漬し,湿度50%,温 度50℃の乾燥環境で2時間暴露,湿度90%,温度50℃ の湿潤環境で17時間暴露,最後に湿度50%,温度50℃ の乾燥環境で5時間暴露するという1日1サイクルの 乾湿サイクルを繰り返すことで行った.腐食量は,経時 的な腐食の進行を確認するため,さびを含む質量増加 量を用いて評価した⁴. 図-1 にサイクル毎の質量増加

	С	Si	Mn	Р	S	Cu	Cr	Ni
普通鋼	0.17	0.33	1.43	0.015	0.005			
(SM490A)								
耐候性鋼	0.18	0.18	0.66	0.011	0.004	0.32	0.48	0.13
(SMA400AW)								

表-1 試験体の化学成分

キーワード:耐候性鋼,異常腐食,組成,元素,塩化物,さび層 連絡先:〒501-1193 岐阜県岐阜市柳戸1番1 TEL058-230-2424

量を示す. 質量増加量に関して, 普通鋼と耐候性鋼の違いはみられなかった. また図-1 中に 36 サイクル後の試験体を示す. またこの試験体のさび層断面を観察するために, 切断し, エポキシ樹脂に埋め込んだ後に, 耐水研磨紙やダイヤモンド懸濁液によるバフ研磨によって, 断面試料を仕上げた.

3. ラマンイメージング・EPMA 測定方法

ラマンイメージング分析法では、RENISHAW 製の顕 微ラマン分光装置 InVia を用いて、さび層断面のマッピ ング測定を行った.マッピング測定の際、レーザ波長 532nmのグリーンレーザをライン状に照射することで、 測定を実施した.マッピングデータの解析によるラマ ンイメージの作成は、多変量解析の一種である DCLS

(Direct Classical Least Squares) 法を用いて行った. 各 測定点のラマンスペクトルに対して, 鉄の典型的な Fe 酸化物・水酸化物 (α-FeOOH, γ-FeOOH, β-FeOOH, Fe₃O₄, Amorphous FeOOH) のラマンスペクトル (モデルスペク トル) の寄与度を算出し, さび組成分布を可視化した. モデルスペクトルは既往の文献 ⁵⁾ を参考にマッピング データから選定した.

EPMA 分析法では,日本電子株式会社製の JXA-8530F を用いて,元素マッピング測定により実施した.加速電 圧を 15kV,サンプリング時間を 10.0ms,検出信号を反 射電子, Fe, O, P, Ni, Cr, Cu, Cl とした.

4. ラマンイメージング・EPMA 測定結果と考察

図−2, 図−3 に、それぞれ普通鋼と耐候性鋼のさび層 断面の組成, Fe, Cl, Cr の元素分析結果の分布を示す. さび組成分布の結果より, 普通鋼, 耐候性鋼ともに, 地 鉄付近に活性さびであり塩化物存在下で生成される,β-FeOOH が分布しており、その上層に不活性さびである α-FeOOH と活性さびである Fe₃O₄ が多く分布していた. 耐候性鋼の良好な環境下での大気暴露試験において, 腐食初期に生成されたのち、さび上層部へ分布するこ とが多い γ-FeOOH⁶⁾ は確認されなかった. Fe 分布の結 果より,図中,青色の部分からさびの形状,オレンジ色 の部分から地鉄の形状を観察できる.これより,普通鋼, 耐候性鋼ともに、さび中層に緻密なさびが分布してい るのに対し、地鉄付近にはクラックや欠落部の多いさ びが分布していることがわかる.また,普通鋼において, さび層と地鉄の界面付近では,地鉄表面は粗い形状と なっており、これに加えて分布中央部では地鉄内部で、 さびの形成が見受けられる.一方で耐候性鋼さび層と 地鉄の界面付近では,幅が狭く深さ方向へ大きく凹ん だ孔食が確認できる. Cl 分布の結果より, 普通鋼では, 地鉄界面で地鉄に沿って Cl が分布していることがわか る.一方で,耐候性鋼では図右側の地鉄界面で特に濃化 している.また,耐候性鋼における Cr 分布の結果より, 合金元素である Cr が層状に濃化しているが, Cl が濃化 している箇所には Cr は濃化していないことが分かる.

5. まとめ

本研究で実施した腐食促進試験結果,重量増加量に おいて,普通鋼,耐候性鋼による違いはみられなかった. さび組成・元素分布の分析結果に関しても、さび層の 中・上層部に α -FeOOH, Fe₃O₄が分布している点,地鉄 付近はクラックや欠落部の多いさびであり,Cl および β -FeOOH が濃化している点が一致していた.また,耐 候性鋼のさび層においては,Cr の濃化箇所でCl の濃化 はみられなかった.

謝辞

試験片作成及びラマンイメージング, EPMA 分析に ご協力いただいた岐阜県産業技術総合センターの山口 貴嗣氏に厚く御礼申し上げます.

<参考文献>

図-2 普通鋼さび組成分布・元素分布

図-3 耐候性鋼さび組成分布・元素分布

2017. 5) 吉岡信明, 吉田敦紀: ラマンイメージングに よる塗膜下腐食挙動の解析, 材料と環境, Vol.64, pp.251-258, 2015. 6) 三沢俊平, 山下正人, 松田恭司, 幸英昭, 長野博夫: 四半世紀暴露した耐候性鋼の安定さび層, 鉄 と鋼, Vol.79, No.1, pp.69-75, 1993.

 ⁽社)日本鋼構造協会:テクニカルレポート No.107 「耐候性鋼梁の維持管理技術」,pp.80-91,2015.
2)日本道路協会:鋼道路橋防食便覧,丸善出版,pp.III-61-63, 2014 3) 土木学会鋼構造委員会:大気環境における鋼構造物の防食性能回復の課題と対策,鋼構造シリーズ, pp.230-231,2019.
4) 蓮池里菜,木下幸治,畑佐陽祐: FT-IR を用いた非塩化物系凍結防止剤による腐食速度 低減効果の検討,鋼構造年次論文報告集,pp.704-707,