鉄骨鉄筋コンクリート部材のひび割れ幅評価法に関する研究

東北大学	学生会員	OPHEUN	Minea
東北大学	正会員	内藤	英樹

1. はじめに

現行の複合構造示方書¹⁾で規定されている鉄骨鉄筋コン クリート (SRC) 部材の曲げひび割れ幅評価式は鉄骨とコ ンクリートの完全付着を仮定した計算が行われている.し かし,断面諸元やせん断スパン比によっては,降伏荷重よ りも低い荷重レベルでも鉄骨の付着損失が生じることが報

告されている.本研究は,鉄骨の滑りを考慮した断面の力の釣合いを解くことにより,SRC部材の最大ひび割れ幅 評価式の高度化を図る.H形鋼のフランジ幅と鉄筋径をパラメータとした SRC 梁部材の曲げ載荷試験および局所振 動試験結果を参照し,提案したひび割れ幅評価式の妥当性を検討した.

2. 実験概要

供試体の概略図を図-1に示す.本実験では,部材長 3800 mm,長方形断面の SRC 梁部材とし,試験体の諸元を 表-1にまとめる.曲げ載荷試験は、図-1に示すように 3 点載荷で行った.載荷ステップは,降伏荷重 Pyを基準 に,0.25Py,0.50Py,0.75Pyの荷重制御とした.その後,降伏変位 δyを基準として,1δy,2δyの変位制御で載荷を行 い,各ステップで目視とクラックスケールにより最大ひび割れ幅を測定した.また,荷重増分に対して,各ステッ プの H 形鋼の付着状態を局所振動試験³により推定した.

3. SRC 部材のひび割れ幅の評価

曲げを受ける断面の力の釣合いの概略図を図-2に示す.最大ひび割れ間隔 Lmax は次式で表せる.

$$L_{\max} = \frac{0.46A_e f_c^{2/3}}{S_{fri} \bar{\tau}_{fri} + S_{bon} \bar{\tau}_{bon}}$$
(1)

ここに, A_e : 引張有効断面積 (mm²), f_c : コンクリートの圧縮強度 (N/mm²), $\bar{\tau}_{fri}$ および $\bar{\tau}_{bon}$: 鉄骨および鉄筋の 付着応力 (N/mm²), S_{fri} および S_{bon} : 鉄骨および鉄筋の付着周長 (mm) である.また,引張鉄筋位置でのひび割れ幅 を W_s , コンクリート表面のひび割れ幅を W_c とし,ひび割れ近傍における回転角を考慮すると,両者の関係は次式 で与えられる.

$$W_c = \gamma W_s \quad \left(\not\subset \not\subset \cup, \quad \gamma = 1 + \frac{dl_1}{h - x - dl_1} \right) \tag{2}$$

示方書に示されている RC 部材の曲げひび割れ幅の算定式¹⁾: *W*_{max} = *L*_{max}(*σ_{se}/E_s+ε_{csd}*) に式 (1),(2) を代入すると, SRC 部材のひび割れ幅の算定式が式 (3) のように求まる.

W _{max} =	$=\frac{0.46\gamma A_e f_c^{'2/3}}{S_{fri}\bar{\tau}_{fri}+S_{bon}\bar{\tau}_{bon}}\left($	$\left(\frac{\overline{\sigma}_{se}}{E_s} + \overline{\varepsilon}_{csd}\right)$	(3)
--------------------	--	--	-----

供試体名	<i>b</i> (mm)	<i>h</i> (mm)	a/d	$dl_1(mm)$	$dl_2(mm)$	Ar,c(径-本)	Ar,t(径-本)	鉄骨寸法(mm)	$f_c'(\text{N/mm}^2)$
S200	300	450	3.88	50	107	D13-2	D13-6	H-250×200×9.0×14	43.3
S150	300	450	3.88	50	107	D13-2	D22-5	H-250×150×9.0×14	43.3
S100	300	450	3.88	50	107	D13-2	D32-4	H-250×100×9.0×14	43.3
※鉄骨寸法	:全高×슄	È幅×ウェ	.ブ厚×	フランジ属	享,A _{r,c} 及で	びA _{r,t} :圧縮及	及び引張鉄筋:	量, <i>f</i> _': コンクリー	トの圧縮強度
キーワー	ドSRC	部材,曲	け載荷	苛試験,ひ	び割れ幅,	付着			
連絡先	₹980	0-8579 仙	山台市青	莱区荒卷字	三青葉 6-6-0	6 東北大学大	;学院工学研究;	科土木工学専攻 TEL	: 022-795-7449

表-1 試験体諸元

表-2 完全付着及び付着損失条件

パラメータ	完全付着	付着損失
中立軸	x	<i>x'</i>
引張有効断面積	$A_e = b(h - x)$	$A_e = b(h - x')$
鉄骨の付着周長	$S_{fri}=2(h_x+b_w)-t_w$	$S_{fri} = b_w - t_w$

図-2 曲げを受ける断面の力の釣合い

ここに, W_{max} :最大ひび割れ幅 (mm), $\bar{\sigma}_{se}$:引張鋼材の平均応力度 (N/mm²), E_s :鋼材のヤング率 (N/mm²),実験中は乾燥収縮などの影響を受けないとして $\bar{\epsilon}_{csd} = 0$ である.また,既往の研究³⁾を参照す

ると,鋼材の付着応力の評価式は, *ī_{bon}* = [0.308+0.428*dl*₁/(*nD*) - 0.106*dl*₂/*b_w*] *f_c*^{-2/3}, *ī_{fri}* = 0.20 *ī_{bon}* で与えられる. ここ に, *dl*₁:鉄筋のかぶり (mm), *dl*₂:鉄骨のかぶり (mm), *n*:鉄筋の本数, *D*:鉄筋径 (mm), *b_w*:鉄骨フランジの幅 (mm) である. H 形鋼の付着状態を**表-2** のように変化させれば,各条件での最大ひび割れ幅を算定できる. **4. 考察**

局所振動試験の結果を図-3 に示す. この結果より,載荷ステップ 0.25Pyでは鉄骨の滑りがないため,共振周波数比は健全値からほぼ低下しなかったと考えられる.しかし,載荷ステップ 0.50Py以降は鉄骨の滑りの影響により, 共振周波数比が徐々に低下したと考えられる.これらの結果を踏まえて,鉄骨の付着周長を決める.また,式(3)を 用いた最大ひび割れ幅の算出結果を表-3 に示す.

実験結果の表-3より載荷ステップの増加に伴い、1 δ_y までスパン中央のひび割れが徐々に大きく開口した.しかし、1 δ_y 以降は引張主鉄筋が降伏したことによってひび割れが大幅に増加したと考えられる.また、本実験では、0.25 P_y ~1 δ_y の範囲は実験値/計算値の平均値が約1.0であり、変動係数が0.2%~13.6%となったが、2 δ_y では実験値/計算値の平均値が約3.0であり、変動係数が40.9%となった。このため、本研究で提示した算定式(3)は降伏までの最大ひび割れ幅を評価できるが、降伏以降は適用できないことが示された.既往の実験データ³⁾と本研究(0.25 P_y ~1 δ_y)を合わせた実験結果と式(3)を用いて算出したひび割れ幅の結果の関係を図-4に示す.参考文献3)の評価式による変動係数は22.4%であったが、提案式による実験値/計算値の平均値は1.087であり、変動係数は20.5%に改善することができた.

5. まとめ

本研究では、断面の力の釣合いを解く ことにより、SRC部材のひび割れ幅評価 式を提示した.提案式は、鉄骨とコンク リートの付着状態を考慮して、最大ひび 割れ幅を算定できる.既存の評価式と比 べて、提案式は適用範囲の拡大を図ると ともに、実験結果とも良く整合すること が確認できた.

参考文献

- 1) 土木学会:複合構造標準示方書【設計 編】,pp.124-127,2015.
- Hideki Naito, John E. Bolander: Damage detection method for RC members using local vibration testing, Engineering Structures, Vol. 178, pp. 361-374, 2018.
- 3) 仁平達也,岡本大,谷村幸裕:SRC部 材の曲げひび割れ幅質定式の検討 +

測定	V	W _{exp} (mm)	$W_{cal}(mm)$			W_{exp}	CV
段階	S200	S150	S100	S200	S150	S100	W _{cal}	(%)
$0.25P_{y}$	0.10	0.10	0.10	0.064	0.078	0.083	1.350	11.4
$0.50 P_y$	0.25	0.25	0.25	0.238	0.239	0.239	1.047	0.2
$0.75 P_y$	0.35	0.35	0.40	0.390	0.387	0.386	0.946	6.8
$1\delta_y$	0.65	0.45	0.60	0.548	0.526	0.535	1.054	13.6
$2\delta_y$	3.00	3.50	3.50	0.733	1.301	2.558	2.717	40.9

材の曲げひび割れ幅算定式の検討,土木学会第66回年次学術講演会, pp. 39-40, 2011.