個別要素法によるトンネル切羽3次元解析

新潟大学大学院自然科学研究科	学生員	今野 真精
新潟大学工学部社会基盤工学プログラム	正会員	阿部 和久
株式会社 福田組	正会員	若月 和人
新潟大学工学部社会基盤工学プログラム	正会員	紅露 一寛

1. はじめに

トンネルの発破掘削では、その際に発生する振動が近接住 居等へ及ぼす影響が懸念される.その対策の一つとして、ト ンネル切羽面にスリット状の溝を掘り新たな自由面を設け る「心抜き自由面発破」と呼ばれる手法が有効とされてい るが、その合理的な設定方法は未だ確立されていない.既往 の研究¹⁾では二次元個別要素法による発破解析を通し、当 該工法の振動低減メカニズムについて検討している.しか し、スリットを設けない通常の心抜き発破の場合、発破孔が 切羽面に対して斜めに設定 (V カット) されるため、その再 現解析に二次元モデルを適用するのは適切でない.

本研究では、三次元トンネル発破解析を対象に個別要素解 析を行い、個別要素・有限要素境界にエネルギー評価境界を 設定することで放射波動エネルギーの評価を行う.解析例 を通し、各手法による効果について検討する.

2. 心抜き自由面発破の概要

従来の心抜き発破 (V カット) 掘削は, 掘削面に対して射 角になるように発破孔を設け, 掘削面手前方向に掘り出すよ うに行われていた. 心抜き自由面発破掘削では, 発破時に最 も負荷がかかる掘削面中心部に, スリット状の自由面 (図 1) を設けることで, 掘削の効率化を図り, 振動を低減する.

図1 心抜き自由面発破

3. 個別要素解析の概要

個別要素法とは、解析対象を自由に運動できる多角形や 円・球の要素の集合体により表わし、個々の要素の運動を計 算する方法である.周りの粒子から受ける接触力 \mathbf{F} を知る ことができれば、質量 mを持つ要素の運動は、ニュートンの 運動の第二法則 ($\mathbf{F} = m\mathbf{a}$)で表すことができる.求まった加 速度 \mathbf{a} を時間積分することで変位が得られ、これを各時刻で 繰り返すことで運動する要素群の運動軌跡が求まる.

図3 解析アルゴリズム

要素間の接触力は,図2に示すような Voigt モデルで表現 する. 法線方向成分と,それに垂直なせん断方向成分に分け, 相対変位・速度から各成分を求める.

4. 有限要素の結合

個別要素解析は,計算に膨大な時間を要する手法である. そこで本研究では,個別要素に比べて解析時間を大幅に削減 できる有限要素を,発破による破壊を生じない外側領域に用 いる.個別要素との結合部では,個別要素側で評価した作用 力を有限要素節点力として与え,当該外力の下で時間積分を 行い応答を求める.有限要素・個別要素結合法による一連の 計算過程を図3に示す.

5. エネルギー評価境界の設定¹⁾

発破震動の原因となる放射波動エネルギーを評価するた めに,解析対象域内にエネルギー評価境界を設ける.境界上 に位置する要素節点の変位速度そこに作用する応力より,境 界を通過する無限遠方場放射エネルギーを求める.

6. 解析条件

(1) 解析モデル

本研究では、半径 6m の球を縦方向に 4 分割したモデルを 対象とし、四面体要素で分割した.右辺自由面から 30cm 離 れた位置に、半径約 25mm の発破孔を奥行 2m で設定した. 球の中心から半径 4m より外部を有限要素領域と設定し、そ の内部の個別要素と結合させ、当該境界面をエネルギー評価 境界とする (図 4).右辺の上下 4m に接する要素の水平変位 と回転速度を拘束して、対象条件を課す.ただし、中央部 3m はスリット (自由面)を想定し、要素を拘束せず、自由に運動 できる状態とする.

Key Words: 自由面発破掘削, 個別要素法, 放射波動エネルギー 連絡先:〒 950-2181 新潟市西区五十嵐二の町 8050 番地 TEL: 025(262)7028, FAX: 025(262)6775

(2) 発破孔内圧力の設定

発破孔に作用するガス圧は,発破孔に接する要素面に対し 法線方向に規定外力として与える.圧力の基本波形は文献 2)における逆推定結果に基づき,次式により与えた(図 5).

$$\bar{P}(t) = \begin{cases} P_0 \cos^2(\frac{\pi}{2}(\frac{t}{a} - 1)) & 0 \le t \le a \\ P_0 \cos(\frac{\pi}{2b}(\frac{t}{a} - 1)) & a \le t \le (b+1)a \\ 0 & (b+1)a < t \end{cases}$$
(1)

ここで, P_0 は最大圧力,a は圧力の立ち上がり時間,b は圧力 が最大値からゼロまで低下する時間を a で除した値であ る (図 6). 各パラメーターの値は, $P_0 = 5.75 \times 10^8$ Pa, $a = 1.33 \times 10^{-4}$ s,b = 2.75と設定した.

(3) 時間増分の設定³⁾

発破解析では発破孔近傍での要素の移動速度が非常に大 きくなり,安定した解を得るには時間増分 Δt を小さくする 必要がある.要素移動距離の許容最大値 ℓ を設定し,要素速 度 v_i から時間増分 Δt_i を決定する.初期値 $\Delta t_i = \Delta t_0$ と し, $\Delta t_i > \ell/v_i$ であれば, $\Delta t_i = \Delta t_i/2$ と設定し直す (Δt_0 は 最大時間増分). $\Delta t_i \leq \ell/v_i$ をみたすまでこれを繰り返す. 当 解析では, $\ell = 1.0 \times 10^{-8}$ m, $\Delta t_0 = 1.0 \times 10^{-8}$ s とし,各要素 で異なる時間増分の下,並列計算を実行する³⁾.

(4) 物性値の設定

解析に用いる物性値を表1に示す.

我 1 彻 庄 恒			
	法線方向バネ定数	800(GN/m ³)	
	接線方向バネ定数	$400(GN/m^3)$	
	法線方向粘性定数	$22.6(MN \cdot s/m^3)$	
	接線方向粘性定数	$10.1(MN \cdot s/m^3)$	
	法線方向粘性定数 (破壊後)	3.08(MN·s/m)	
	粘着力	8.0(MPa)	
	摩擦係数	0.30	
	破壊解放エネルギー	270(N/m)	

主1 肋州荷

7. 解析結果

上記条件で発破後 1.0 × 10⁻³s までの解析を行った. 結果 を 図 6 に示す. 発破孔近傍の要素に破壊が生じ, 放射状に亀 裂が伸びている様子が窺える. 拘束面に関しては, 自由面を 設定した領域がより破砕されていることがわかる.

放射波動エネルギーの 50Hz 成分の分布を 図7 に示す. 縦 波,横波のどちらも自由面方向 (x 方向) に放射成分の低減が 認められる.

図6 解析結果 (t=1,0×10⁻³s)

図7 放射波動エネルギー

8. おわりに

本研究では、三次元個別要素・有限要素結合解法を構築し、 自由面発破モデルを対象に解析を行った.また、無限遠方場 における放射波動エネルギーの評価解析を組み込んだ. 今 後は、様々なスリットパターンや従来の心抜き発破(Vカッ ト)を対象に解析を行い、その効果について比較検討する予 定である.

参考文献

- 1) 若月和人、齋藤優,阿部和久,紅露一寛:心抜き自由面発破の個別要 素解析と振動低減効果の解明,土木学会論文集 F1,Vol.72(3),L16-L27,2016.
- 2) 齋藤優, 若月和人, 阿部和久, 紅露一寛:個別要素法によるコンクリート供試体発破実験の再現解析, 計算数理工学論文集 Vol.15,pp.19-24,2015.
- 3) 今野真精,阿部和久,若月和人,紅露一寛:トンネル発破解析を対象とした3次元個別要素法の計算効率改善,計算数理工学論文集,18,29-34,2018.