離散鉄筋モデルを用いた非線形有限要素解析による RC 柱の 2 方向加力経路の影響検討

大成建設(株)原子力本部 正会員 〇園部 秀明 渡辺 和明 小野 英雄 大成建設(株)技術センター 正会員 山本 悠人 坂下 克之 畑 明仁

1. はじめに

原子力発電所の屋外重要土木構造物の耐震性能照 査指針が改訂され¹⁾,三次元非線形有限要素解析に よる照査手法が導入された.しかし,鉄筋コンクリ ート(RC)の三次元非線形解析手法に対する適用性確 認は十分とは言い難く,今後ベンチマーク実験等と の精度検証が必要になると考えられる.

本検討では,RC構造物の三次元非線形解析手法の 確立に向けて,前川モデル²⁾と離散鉄筋モデルを組 み合わせた解析手法を提案し,適用性確認と解析的 検討を行った.まずRC柱の既往実験との比較により, その適用性を確認した.そして,水平2方向加力経 路による最大耐力等への影響について検討した.

2. 実験概要³⁾と解析モデルの構築

橋脚を模擬した RC 柱の既往実験は,断面形状 700mm×700mm,主鉄筋比が 1.9%,せん断補強筋比が 0.08%のせん断破壊型の試験体を対象としている.材 料条件はコンクリートの圧縮強度が 28.9MPa,鉄筋の 規格が SD295 である.実橋脚と同じ軸力となるよう に載荷後,一定速度で正負交番載荷を行っている.

コンクリートのひび割れや鉄筋を有限要素解析で 用いる場合,それぞれ離散的に表現する方法と,要 素内で一様に分布させる方法がある.コンクリート の分散ひび割れモデルの一つに前川モデルがあり, 研究・実績が豊富である.一方で,鉄筋を一本ずつ モデル化する離散鉄筋モデルは,三次元形状の影響 を考慮できると考えられる.筆者らは,これらを組 み合わせたモデル化手法を提案する.

解析モデルを図1に示す.要素種類と非線形構成 則についての条件を表1に示す.本モデルでは、フ ーチングを含む全ての試験体をモデル化し、鉄筋に ついては離散鉄筋モデルを用いている.なお、RCの モデル化においてコンクリートと鉄筋の付着作用を 考慮する必要があるため、本検討ではコンクリート は無筋コンクリートの前川モデルを用いて、鉄筋は バイリニア型、相互の付着すべり関係として島モデ ルを採用している^{4),5)}.フーチングとその配筋もす べて含めてモデル化することで,抜け出しについて も考慮できる.

三次元有限要素解析は汎用コード DIANA 10.2 を用 いる.

図1 解析モデル(寸法,配筋)表1 要素種類と非線形構成則条件

		非線形構成則		上/ NC/二 法明*	
部材	使用要素	圧縮,引張, せん断	付着すべり	でん断伝達(対数 パラメータ	
コンクリート (柱,フーチング)	ソリッドニ次要素	前川モデル	-	せん断軟化開始ひずみ:400 μ せん断軟化勾配:Gfより算定	
鉄筋	埋め込み鉄筋梁要素 (離散鉄筋モデル)	バイリニア (圧縮・引張)	島モデル	-	

3. モデル化の妥当性検証

今回の解析では、1方向の静的プッシュオーバー 解析を行い、実験結果との比較を行った.図2と表 2に実験と解析の比較結果を示す.ここで、せん断 破壊点は、最大耐力点の8割に低下した点としてい る³⁾.最大耐力は実験と若干の差が生じているもの の、主筋の降伏、せん断破壊点、荷重-変位関係の包 絡線は概ね一致している.

	主鉄筋降伏		最大耐力		せん断破壊	
	変位	荷重	変位	荷重	変位	荷重
実験	8.6	487	21.2	666	32.8	533
解析	8.1	511	15.1	622	35.3	357

ひび割れ分布図比較 図3

図3に終局時のひび割れ分布の比較を示す.破壊 モードは共に曲げ降伏後せん断破壊であり、損傷の 位置も概ね整合している. これらの比較結果より, 解析結果が実験結果を良好に再現していることが分 かる.

4. 2方向加力の検討

1方向加力の解析に加えて、表3に示す2方向加 力の解析ケースを追加し、2方向加力の影響を検討 した. Case 2 ケースは、せん断ひび割れが発生する 付近まで X 方向に載荷し, 原点に戻してから Y 方向 に終局までプッシュオーバーを行う. Case 3 では, X 方向の変位を保持したまま、Y 方向に終局までプッシ ュオーバーを行う.

加力パターン 表 3

解析ケース	載荷方法			
Case 1	水平1方向 (単調)			
Case 2	水平2方向 (直交方向交番⇒単調)	↓ Y+ x+ x-		
Case 3	水平2方向 (直交方向変位保持⇒単調)			

5. 解析結果の考察

Y 方向の水平荷重-載荷点変位関係の解析結果を図 4に示す.図5に15mm載荷時のひび割れ分布を示す.

Case 3 では, 1 方向加力 (Case 1) の場合と比較 して荷重が低下していることがわかる. これはせん 断ひび割れが開いた状態で直交方向に載荷されるた め、ひび割れ面のせん断が伝達されないためと考え られる. 一方で, Case 2 では最大耐力が Case 1 より 増加する傾向となった. 図7のせん断ひび割れ分布 を見ると、Case1よりCase2の方が損傷は分散して いることがわかり、プレクラックによる影響 6)と考 えられる.

15mm 載荷時のひび割れ分布 図 5

6. まとめ

本検討では、既往の構造実験を概ね再現できる解 析手法を用い、2方向加力による最大耐力等への影 響を把握することができた、今後、更なる加力経路 の解析を実施し、実規模の構造実験等での精度検証 も行う予定である.

参考文献

- 1) 土木学会原子力土木委員会:原子力発電所屋外重要土木 構造物の耐震性能照査指針・マニュアル・照査例, 2018.
- 2) K. Maekawa, A. Pimanmas and H. Okamura: Nonlinear Mechanics of Reinforced Concrete, CRC Press, 2003.
- 3) 佐々木, 袴田, 前川, 星隅: 炭素繊維シートを用いた RC 橋脚補強の実験的検討, 1997.
- 4) 土木学会コンクリート委員会:コンクリート標準示方書 【設計編】, 2017.
- 5) H. Shima, Lie-Liung Chou and Hajime Okamura: Micro and Macro Models for Bond in Reinforced Concrete, The University of Tokyo, 1987.
- 6) A. Pimanmas and K. Maekawa: Influence of Pre-crack on RC Behavior in Shear, JSCE, 2001.

離散鉄筋モデル,非線形有限要素解析,前川モデル,2方向加力 連絡先 〒163-0606 東京都新宿区西新宿 1-25-1 新宿センタービル 29F TEL 03-5381-5196