全偏波航空機 SAR 画像を用いた 2016 年熊本地震による斜面崩壊と橋梁被害の検出

1		は	じ	め	12
	•	10		U)	· ~

将来日本で発生が危惧されている首都直下型地震 や南海トラフ地震では、津波や斜面崩壊、強震動に よる道路橋や鉄道橋等の交通インフラの被害が懸念 されている. 地震や津波などの自然災害は被害が広 範囲に及ぶことが多く、現地調査による迅速な被災 情報の把握は極めて困難である. リモートセンシン グ技術は地上を広域かつ瞬時に観測できる特徴から, 自然災害の把握に有効である ¹⁾. リモートセンシン グ技術の1つである合成開口レーダ(SAR: Synthetic Aperture Radar)は、マイクロ波を地表面に照射し、そ の反射波を受信して画像を作成するため、天候の影 響を受けず夜間でも観測可能である。実際、情報通 信研究機構(NICT)は 2011 年東北地方太平洋沖地震 や 2016 年熊本地震の際に、全偏波航空機 SAR(Pi-SAR-X2)センサを用いた被災地の緊急観測を行った. 本研究は、2016年熊本地震により被害を受けた南阿 蘇村を対象に、Pi-SAR-X2 画像における 3 つの橋梁 と斜面崩壊の後方散乱特性の変化を調べた.4 成分 散乱電力分解を利用し,橋梁輪郭内の散乱電力割合 の変化による橋梁被害の把握を試みた.

2. 対象地域と使用する航空レーザーデータ

2016 年 4 月 14 日と 16 日に発生した Mw 6.2 と Mw 7.0 の地震により斜面崩壊が広範囲にみられた 熊本県南阿蘇村を対象地域とした.表1 に使用した Pi-SAR-X2 データの撮影条件を示す. 地震前後の観 測では航空機の機首(アジマス)方向の差がわずか 1 度であったため,位置補正後 2 枚の SAR 画像を重 ねて比較することが可能である.

本研究では SAR 画像の後方散乱特性を検討する ため,撮影された4 偏波を用いて4 成分散乱電力分 解を行った.4 成分散乱電力分解とは,ターゲット から反射されたマイクロ波の散乱現象を表面散乱 (Ps),体積散乱(Pv),2 回反射散乱(Pd),ヘリッ クス散乱(Pc)に分解することで,より詳細に散乱 メカニズムを識別できる方法である²⁾.地震後に撮 影した対象地である南阿蘇村の航空写真と Pi-SAR-X2 の散乱電力成分のカラー合成画像を図1 に示す.

正会員	○リュウ・ウェン
非会員	田邉 諒士
正会員	山崎 文雄
正会員	児島 正一郎
	正会員 非会員 正会員 正会員

表1 使用する2時期のPi-SAR-X2画像の撮影条件

撮影日		2015/12/5	2016/4/17
飛行高度	[m]	8981	9027
機首方向 [°]		-91.3	-90.3
	Near	39.0	38.1
撮影角度 [°]	Center	42.6	41.8
	Far	46.0	45.2
解像度 (A x R) [m]		0.30×0.44	0.30×0.45
リサンプリングサイズ		0.30 m/pixel	

図1 対象地域における国土地理院が2016年4月16日 に撮影した航空写真(左)と4月17日撮影したPi-SAR-X2 画像の散乱電力カラー合成図(右)

3. 斜面崩壊域における散乱特性の変化

図2に2時期の表面散乱成分のカラー合成画像 と差分画像(post-pre)を示す.一般的に斜面崩壊では, 植生が裸地に変わると,体積散乱が減少し表面散乱 が増加するため,カラー合成画像に赤色が強くなる. そのため,カラー合成図中の赤色部分は斜面崩壊に より土砂が流出し裸地になった箇所と考えられる.

斜面崩壊による後方散乱特性の変化を調べるため に、大規模斜面崩壊域(a)と中規模の斜面崩壊域(b)を 選択し、各散乱電力成分の2時期差分値を求めて表 2に示す. SAR 画像全体における地震発生前後の 後方散乱係数の差分の平均値と比較して、斜面崩壊 域との差が最も大きいのはPs 成分の16.1dBであり、 他の2 成分の約2 倍であった.よって、Ps が斜面 崩壊箇所において最も後方散乱値が変化した成分で あり、斜面崩壊を特定するのに適していると考えら れる.しかし、農地における季節変化による表面散 乱成分の増加が見られたため、斜面崩壊の特定には 標高や土地被覆などの追加情報が必要である.

キーワード 航空機 Pi-SAR-X2 画像, 熊本地震, 斜面崩壊, 橋梁被害 連絡先 〒263-8522 千葉市稲毛区弥生町 1-33 千葉大学大学院工学研究院 TEL: 043-290-3528

図2 2時期の表面散乱成分のカラー合成画像(左)とその 差分画像(右)

表2 斜面崩壊域(a),(b)と画像全体における各散乱電力成 分の差分の平均値

勤 利 武 八	差分の平均値 [dB]			
取 品 成 万	斜面崩壊域	画像全体	差分	
Pd	16.4	7.8	8.6	
Pv	21.3	13.9	7.4	
Ps	22.2	6.1	16.1	

4. 被害橋梁の後方散乱特性

斜面崩壊により崩壊した阿蘇大橋,橋自体の崩壊 はなかったが制振ダンパー等の部材が破損した南阿 蘇橋,そして橋台部が沈下し橋梁と道路が分断され た長陽大橋の3橋梁について後方散乱成分の変化を 調べた(図3).橋梁の輪郭を作成し,輪郭内におけ る散乱電力の平均値を四成分の散乱電力の合計とし, 各成分の割合を算出した.

阿蘇大橋は全長 206m の道路下にアーチ構造を持 つ橋であった.事前画像では,アーチ構造部分に体 積散乱を生じていることが確認できる.橋梁輪郭内 での散乱電力の割合は,地震後 Ps の割合が 20%近 く増加し, Pd の割合が 20%以上減少した.これは, 橋梁自体が消失し,橋梁輪郭内に橋下の土砂堆積物 が映りこんだためと考えられる.

南阿蘇橋は、全長 110m の道路下にアーチ構造を 持つ橋である.地震により側橋台にある制震ダンパ ーが外れジョイント部が損傷したが、橋自体は崩壊 しなかった.SAR の照射角が小さかったため、橋床 版のみが映り、アーチ構造部分は確認できなかった. 床版上では後方散乱がほぼ確認できず、鏡面反射が 生じていることがわかる.散乱電力成分の割合にお ける変化が少なく、SAR 画像による詳細な橋の損傷 個所についての特定は難しい.

長陽大橋は.黒川渓谷に架かる全長 276m の PC4 径間連続ラーメン構造の橋梁である.地震により橋 台部が約 2m 沈下し支承部が破壊されたため,全面 通行止めになった.また,橋の両端部では斜面崩壊 が発生し,道路のアスファルトが砕けた.地震後, 橋梁輪郭内において Ps の割合が 12%増加した.こ れは,橋梁周囲の谷から土砂が流出し,橋梁輪郭内

図 3 対象とした 3 本の被害橋梁の散乱電力成分のカラ 一合成図

に映り込んだためと考えられた.

本研究では橋梁輪郭を床版のみで作成しており, 橋梁下部のアーチや橋脚を含めていないため,落橋 しない限り,橋の側面や下部工の詳細なダメージを 把握することは困難である.一方で,橋の床版に何 らかの変化(流失や土砂の堆積)があれば,橋梁輪 郭内の散乱電力割合変化から被害を抽出することが 可能である.

5.まとめ

2016 年熊本地震によって被害を受けた南阿蘇村 における斜面崩壊域と3本の被害橋梁を対象に,地 震発生前後の全偏波航空機 SAR 画像を用いて,散乱 電力成分の変化を調べた.2つの SAR 画像の撮影条 件が近似していたため,位置補正を行うことで後方 散乱を直接に比較できた.斜面崩壊域では,表面散 乱成分における電力増加が最も大きく,被害抽出に 適していることがわかった.また,橋梁輪郭内にお ける2時期の散乱電力成分の割合を比較して,橋梁 被害の把握を試みた.その結果,崩落した橋梁では 表面散乱の増加が確認されたが,橋脚の損傷や橋台 のずれといった床版外の被害抽出は困難であった.

謝辞:本研究に使用した航空機 SAR データは,国立研究 開発法人情報通信研究機構より提供されたものである. 記して謝意を表します.

参考文献

- 1) リュウ・ウェン,山崎文雄,郷右近英臣,越村俊一: 高解像度 SAR 画像を用いた東北地方太平洋沖地震に おける津波湛水域と建物被害の抽出,日本地震工学会 論文集,12(6), pp. 73-85, 2012.
- Singh, G., Yamaguchi, Y., Park, S.: General four-component scattering power decomposition with unitary transformation of coherency matrix, IEEE Transactions on Geoscience and Remote Sensing, 51(5), 3014-3022, 2013.