ミャンマー国吊橋の耐震性能照査に係わる報告2 ~設計図面モデルと現況再現モデルによる解析結果の違い~

日本工営(株)	正会員	○合田哲朗	野末康博
東京大学	正会員		長井宏平
北海道大学	正会員		松本浩嗣
長岡技術科学大学	正会員		岩崎英治

1. はじめに

「ミャンマー国吊橋の耐震性能照査に係わる報告 1」(以降、報告1と記載する)では、Twantay 橋の 現況の変状を考慮して作成されたモデル(Step5)¹⁾を 使用した解析を実施した。今後、ミャンマー国に存在 する類似構造を有する吊橋に対して同様の耐震性能 照査を実施する場合、現況状態を再現したモデル作 成には吊材・主ケーブルの張力測定や主塔の傾き計 測を実施して解析モデルに反映する必要があり多大 な労力を要する。

そこで本論文では、Twantay 橋の設計図面モデル (Step1)及び同橋の現況再現モデル(Step5)¹⁾の2つの モデルを用いて線形時刻歴応答解析を実施し、得ら れた解析結果を比較することで現況の再現が解析結 果に与える影響を確認する。以下より、設計図面モデ ル(Step1)をStep1モデル、現況再現モデル(Step5) をStep5モデルと記載する。

2. 解析概要と断面計算箇所

Step5 モデルの作成概要については、報告1に示す とおりである。また、両解析モデルの詳細は文献¹⁾を 参照されたい。報告1と同様に3Dフレーム要素を用 いて解析モデルを作成し、全ての要素は線形弾性体 としてモデル化している。固有値解析及び時刻歴応 答解析についても、報告1に記載した内容と同様の 設定で実施した。一方、入力地震波には道路橋示方書 L1(III種地盤)のみ用いる。

本論文にて比較を行う断面を図1及び図2に示す。 対称性により上流側のみを選定した。

- ① T1 及び T2 における主塔(鋼) 基部
- ② T1 及び T2 における主塔(コンクリート)基部
- ③ AN1 及び AN2 のアンカレイジ基礎

T1 主塔では支承条件がピン・ローラー、一方 T2 主 塔では支承条件がピンとなっているため、両主塔に 対する計算結果を掲載する。

図2 断面計算箇所(主塔)

3. 解析結果

図3に橋軸方向での各主塔における最大・最小応 答変位の比較を掲載する。T1主塔では、支承条件が ピンであることから補剛桁の影響を受けて、特に主 塔(鋼)基部付近で初期位置からの相対変位がT2主 塔に比べて若干大きく観測された。本解析条件にお いて、Step1モデルとStep5モデルにおける初期位置 からの相対変位はほぼ同様となった。

①T1 及び T2 における主塔(鋼)基部

表1に当該箇所での曲げモーメントの値を掲載す る。Step5モデルではT2側に発生する曲げモーメン ト(M_{sei})がT1側のものより大きいが、Step1モデル では逆の傾向となった。これは、Step5モデルにて、 T2 側主塔の主径間方向への傾きがT1 側よりも大き く設定されていたため、初期入力の曲げモーメント 値(M_{ini})が大きくなっていることに起因する。一方、 Step1モデルと Step5モデルで、動的解析により付加 される曲げモーメント値(M_{sei}-M_{ini})は両者で概ね同 様となった。

②T1 及び T2 における主塔(コンクリート)基部

表2に当該箇所での曲げモーメントの値を掲載す る。結果の傾向は、①とほぼ同様となった。本論文に は詳細は掲載していないが当該箇所について断面計 算を実施すると、Step5モデルではT1・T2 側ともに コンクリート及び鉄筋に発生する応力度が許容応力 度を超過するが、Step1モデルではT2 側は許容応力 度以内に収まる結果となった。

= -	<u>→</u> +₩	(4回)	H D
衣丨	土坮	(珈)	をつい

Case	箇所	M _{ini} [kNm]	M _{sei} [kNm]	M _{ini} - M _{sei} [kNm]
Stop1	①-T1	1.1	6033.1	6032.0
Stepi	①-T2	1.1	2678.4	2677.3
Stop E	①-T1	3513.0	8798.2	5285.2
Steps	①-T2	12043.9	14888.4	2844.5
M _{ini} :動的解析前にモデルに付与されている初期曲げモーメン M:動的解析により算出された曲げエーメン				

Msei・動的解析により算由されに曲けモーメント ※橋軸方向の結果のみ記載

表 2	主塔	(コンク	リート)基部
-----	----	------	-----	-----

Case	箇所	M _{ini} [kNm]	M _{sei} [kNm]	M _{ini} - M _{sei} [kNm]
Stop1	2-T1	29.9	40956.8	40926.9
Stepi	2-T2	38.7	20861.6	20822.9
Step5 2.	2-T1	2731.0	44283.2	41552.2
	2-T2	17426.1	38195.4	20769.3
M _{ini} :動的解析前にモデルに付与されている初期曲げモーメン				

Msei:動的解析により算出された曲げモーメント ※橋軸方向の結果のみ記載

表3 アンカレイジ基礎

Cooo		基礎ばね反力		
Uase	固加	水平力 [kN]	回転 [kNm]	
Stop1	3-AN1	74751	835196	
SLEPT	3-AN2	74554	832524	
StopE	3-AN1	75281	841122	
SLeps	3-AN2	75264	841370	
	•		※橋軸方向の結果のみ記載	

③AN1 及び AN2 のアンカレイジ基礎

Stepl モデルと Step5 モデルの両者でアンカレイジ 基礎の基礎ばね反力は同様の値となった。主ケーブ ル張力による影響に比べて、アンカレイジに作用す る慣性力のみが卓越していると考えられる。

4. おわりに

本解析では、主塔の傾きは主塔の断面力に影響す るが、本橋で最も地震に厳しくなるアンカレイジ基 礎には影響をほぼ与えないことが分かった。主塔基 部の照査を詳細に行う必要がある場合、現況再現モ デル作成の必要性が高いと考えられる。

本業務は、国土交通省「平成 30 年度海外における 交通インフラ事業に関する基礎情報調査及び新規案 件形成等検討業務」の一環として実施された。ここに 感謝の意を表する。

参考文献

1) K. Matsumoto, et al.: Performance Assessment Using Structural Analysis and Spatial Measurement of a Damaged Suspension Bridges: Case Study of Twantay Bridge, Myanmar, J. Bridge Engng., ASCE, Vol.23, Issue 10, August 2018.