畳み込みニューラルネットワークを用いた切羽性状の評価に関する検討

飛島建設	正会員	○鈴木	亮汰
飛島建設	正会員	松田	浩朗
飛島建設	正会員	兼松	亮

1. はじめに

2012 年に AlexNet が画像認識競技会:ILSVRC にて 他のモデルに大差をつけて優勝して以降,深層学習は 情報学にとどまらずに様々な分野で注目が集まってい る.本研究は,この深層学習のうち,画像認識で広く使 われている畳み込みニューラルネットワーク(CNN)を トンネル現場で行われる切羽評価に適用させることを 検討したものである.

2. 支保パターンの推定

まず,切羽全体を写した写真を用いてその地点の支 保パターン(CI, CII, DI...)を推測する識別型 CNN 作 成を試みた.できあがったネットワークは 8~9 割程度 の高い正答率で支保を予測できたが,Grad-CAM¹⁾を用 いて判別に関する影響度分布を可視化すると,図1に 示すように鏡面ではなく支保部材の存在が大きく影響 していることが確認された.

図1 Grad-CAM による支保判定の可視化の一例

3. 切羽画像のトリミング

本質的な切羽評価になるよう、支保部材が写らない

ようなデータセットを作成した. 画像収集の流れを図2 に示す. 切羽観察簿では, 天端・右肩・左肩の3つに切 羽を分けてそれぞれ評価を行っているので, トリミン グもこれに従って行った. また, CNN では正方形の画 像を入力として使用するので, ここからさらにランダ ムに複数回トリミングを行ってデータを蓄積させた. これにより, 100 枚程度の切羽画像から 5000 枚程度の 教師データを取得することができた.

図2 データセット作成方法の概略図

4. 識別型 CNN の設定と推定結果

トリミングされた画像から,切羽観察簿の評価項目 に合わせて識別型 CNN を作成した.本研究では, Google 社の研究チームが公開している Inception-v3²か ら転移学習を行っており,中間層ではあらかじめ学習 されたパラメータを使用し,最終層である全結合層で 評価項目に合わせた出力次元の調整を行っている.例 えば一軸圧縮強度の場合,切羽観察簿では 6 段階に評 価していたので,出力は6次元に設定され,全体のレイ ヤ構成は図 3 のようになる.

このようにして得られた CNN と、学習とは独立させ

て用意した切羽画像を用いて識別テストを行った.結 果は表1の通りであり、いずれの項目も70%以上の割 合で正しく識別することができた.また、誤答について も極端な間違いはなく、最終的な支保パターン選定へ は大きく影響しない程度の誤差であった.しかし、本研 究において識別できるだけのばらついたデータを集め ることができたのは、一軸圧縮強度と風化変質の2項 目に関してのみであり、他の評価項目についてはデー タが拡充しておらず、CNNを作ることができなかった. このように、取り扱うデータの偏りによって学習が実 行不可になるということが課題として抽出された.

衣 1	表 1	識別の正答率
-----	-----	--------

識別項目	画像点数	正答数	正答率
一軸圧縮強度 (6段階評価)	185	142	76.8%
風化変質 (4 段階評価)	178	126	70.8%

5. 回帰型 CNN の設定と推定結果

評価点に偏りのあるデータセットでも学習ができる よう,回帰型CNNを構築する.このネットワークでは, 出力は1次元に設定され,正解として設定した値と出 力との差で損失関数を取る.本研究では,識別型CNN と同じデータセットを用いて一軸圧縮強度の推定につ いて回帰型CNNを検討した.損失関数については,以 下に示すRMSEを用いて最適化計算を行った.なお,y は出力値[N/mm²], ŷは正解値[N/mm²], mは損失算出 のために扱うデータ数を表している.

$$RMSE = \sqrt{\{\Sigma_{i=1}^{m} (y^{i} - \hat{y}^{i})^{2}\}/m}$$

また、レイヤ構成については以下の表 2 に示す通り とし、適宜 Batch Normalization³⁾を導入して出力の正規 化を行った.

Туре	patch size/stride	input size
conv	5 × 5/3	$224 \times 224 \times 3$
batch-norm		$74 \times 74 \times 64$
average pool	$2 \times 2/2$	$74 \times 74 \times 64$
conv padded	$4 \times 4/1$	$37 \times 37 \times 64$
batch-norm		$37 \times 37 \times 128$
average pool	$3 \times 3/2$	$37 \times 37 \times 128$
conv padded	$3 \times 3/1$	$18 \times 18 \times 128$
batch-norm		$18 \times 18 \times 128$
conv padded	$3 \times 3/1$	$18 \times 18 \times 128$
fully connected	regression	$18 \times 18 \times 256$

表2 回帰型 CNN の構成

学習から得られた予測器を使って切羽画像から一軸 圧縮強度を求めた結果を図 4 に示す.正解値と出力値 とで正の相関を取ることが理想であるが,相関係数は 0.28,全体の RMSE 値は 28.9 となり,実際の切羽評価 に使えるほどの精度は得られなかった.しかし,識別 型 CNN でなくても一軸圧縮強度を算出できる可能性を 確認できた.

6. まとめ

CNN を用いてトンネル切羽の性状評価ついて検討を 行った. 結果をまとめると以下の通りである.

- 切羽全体の画像を使用し、支保パターンを推測する CNN から、支保部材の写り込まないデータセット が本質的な切羽評価には必要と分かった。
- ・ 鏡面でトリミングを行い、そこから転移学習によっ て識別型 CNN を作成した. 圧縮強度と風化変質に ついて 70%以上の正答率で識別することができた が、CNN を作るためにはさまざまな評価のデータ を集める必要があり、教師データ拡充の難しさが課 題として挙がった.
- 切羽鏡面の一軸圧縮強度を推定する回帰型 CNN を 提案した.現場の切羽評価に使えるほどの精度は得 られず,データの収集方法やレイヤ構成等に再検討 が必要と考えられるが,教師データの評価点がばら ついていなくても学習できるモデルを作ることが できた.

参考文献

- R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. In ICCV, 2017.
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna: Rethinking the Inception Architecture for Computer Vision. In CVPR, 2016.
- S. Ioffe, C. Szegedy: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In ICML, 2015.