地下空洞型処分施設におけるモニタリング項目の計測実現性確認(4)

-地下空洞型処分施設機能確認試験(その16)-

(株) 大林組 正会員 〇森岩 寛稀 佐藤 伸 山本 修一 鹿島建設(株) 正会員 須山 泰宏 取違 剛」 東電設計 (株) 伊藤 正会員 喜広

原環センター 正会員 広中 良和 藤原 啓司 脇寿一 寺田 賢二

1. はじめに

著者らは, 地下空洞型処分施設における閉鎖後長 期の管理に資するモニタリング技術の確立やその 実証実験の必要性に鑑み,中深度処分施設の人工バ リアや周辺岩盤の長期にわたる機能確認方法の確 立を目的とした調査・検討を進めている1). 本検討 では,施設構築時及び閉鎖後長期の計測可能なモニ タリング項目を抽出するため、水・力学・空気連成 解析(以降, HMG 連成解析)を実施して施設建設 段階及び閉鎖後の人工バリア部の挙動を推定する. 本稿では、特に変形挙動に着目した検討を行った. なお,検討対象とするのは,低レベル放射性廃棄物 処分施設の一つである中深度処分施設とする.

2. 検討及び解析概要

ここで着目すべき事項は、構築段階も含めた低透 水層の膨潤による施設内の圧力変化と変形である. 検討対象となる施設は、閉鎖された空間の中に地下 水が浸潤することから空気圧縮の影響を受ける. さ

らに、低透水層はベントナイト (クニゲル GX) を乾燥密度 $ho_d=1.6 Mg/m^3$ に締め固めて構築されるため膨潤圧が発生する. そこ で、重要なのが、空気の挙動とベントナイトの膨潤及び弾塑性挙動 の考慮である. そこで、本検討では THMG 連成解析が可能な CODE BRIGHT²⁾を用いた。また、低透水層には膨潤性粘土の弾塑 性挙動を考慮できる Barcelona Basic Model³⁾を適用した. 解析で考慮 した解析ステップを図-1に示す.また、構築ステップと載荷荷重 の関係を図-2 に示す. なお、構築段階における荷重は構築対象部 材の自重がステップ終了時に 100%載荷されるように設定した. 境 界条件は支保工背面を完全固定条件とし、構築段階は開放面に大気

圧相当の分布荷重を載荷している. 水理境界については、解放面は不浸透境 界,支保工背面は50年以降に飽和条件(水圧Pl=空気圧Pg=1.0MPa)を載荷 している.解析に用いたパラメータとして,表-1に二相流パラメータ,表-2に低透水層弾塑性パラメータ及び表-3に弾性パラメータを示す。

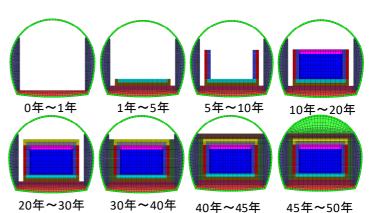
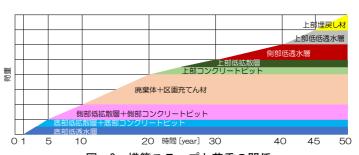



図-1 解析で考慮した構築ステップ

構築ステップと荷重の関係

表-1 二相流パラメータ

	記号	単位	低透水層	上部埋戻し材 (土質系)	セメント系 部材	モルタル 系部材		
初期飽和度	Sr	%	0.85	0.75	0.90	0.90		
絶対浸透率	K	m ²	5.81E-20	5.81E-18	5.81E-20	1.16E-20		
水分特性曲線(van Genuchten model)								
モデル係数	P_0	MPa	3.27	0.04	0.70	1.2		
モデル係数	λ	_	0.41	0.60	0.47	0.29		
最大飽和度	S_{ls}	_	1.00	1.00	1.00	1.00		
残留飽和度	S_{lr}	_	0.00	0.00	0.00	0.15		
相対浸透率(液相 $k_t=S_c^{\lambda}$, 気相 k_{re} :(1- S_e) $^{\lambda}$)								
液相モデル係数	λ	-	2.0	4.0	4.0	25		
気相モデル係数	λ	-	2.0	2.6	2.5	2.8		
最大飽和度	S_{ls}	_	1.00	1.00	1.00			
残留飽和度	S_{lr}	-	0.00	0.00	0.00			

表-2 低透水層弾塑性パラメータ

項目	記号	単位	設定値
ポアソン比	ν		0.42
膨潤指数(飽和時)	κ ₀	I	0.087
圧縮指数(飽和時)	λ_0	ı	0.117
参照有効応力時の湿潤膨潤指数(飽和時)	κ_{s0}	-	0.2108
有効応力依存湿潤膨潤指数パラメータ	$\alpha_{\rm sp}$	I	-0.544
サクション依存のκのモデルパラメータ	$\alpha_{\rm i}$	ı	-0.165
限界応力比	M		0.548
圧密先行応力(飽和時)	P_0^*	MPa	1.5

表-3 弾性パラメータ

	ポアソン比	弾性係数 (kN/mm²)
RCピット	0.2	35,260
低拡散層	0.2	27,530
埋め戻し材(土質系)	0.43	0.0049
埋め戻し材(セメント系)	0.2	36,000
支保工	0.2	27,900
均しコンクリート	0.2	22,000

キーワード 放射性廃棄物,地下空洞型処分,中深度処分,機能確認,モニタリング,連成解析 連絡先 〒108-8502 東京都港区港南 2-15-2 ㈱大林組原子力本部原子力環境技術部 TEL03-5769-1309

3. 解析結果

解析は50年間の構築ステップ後,1000年までの浸潤解析を行った.解析結果として図-3に施設内の構築に応じた飽和度分布を示す.施設内構築時には岩盤からの水の浸潤はないものの,各部材のサクションバランスによって水分の移行が生じる.特にサクションの高い低透水層が施工されると,周辺の飽和度が下がり,低透水層の飽和度が上昇すると,膨潤するため体積膨張が生じる.図-4に施設の代表位置における変位経時変化を示す。なお,経時変化については,実施設で長期の沈下計測が可

能な位置を対象とした. RC ピット底部の挙動に着目する と,1年から5年までは底部低透水層の膨潤に伴い,上昇 方向へ変形する. その後, 20 年から廃棄体が載荷される と、廃棄体の重さによって施設が沈下する。45年からは 上部低透水層が施工され、上部埋戻し材の水分を吸収し 膨潤することから、さらに沈下することになる. 50 年以 降は岩盤からの地下水が浸入する. そのため, 施設内の 空気は圧縮され、圧力によっては液相へ溶解される. 岩 盤からの移行距離が一番短い底部低透水層へ先に岩盤か らの水が到達する.この時,溶存空気も移行拡散するた め、この部分の空気圧が上昇する. それによって、沈下 していたRCピットが空気圧によって60年から70年の間 に一度上昇する. その後は, 空気が内側へ移行し間隙圧 力が低下すると変位は反転し沈下する. 飽和度の経時変 化を \mathbf{Z} に示す. 施設内は残存する空気の影響によって, 完全に飽和しない. 図-6にRCピットの平均有効応力を 示す. ここで、80年付近までは低透水層の膨潤によって 圧力が増加するが、その後は空気の侵入によって有効応 力は低下する.

4. おわりに

地下空洞型処分施設の構築時を主に HMG 連成解析を 実施した.本検討より、構築時はサクションバランスに よる水の浸潤が、閉鎖後は施設内に残留する空気の動き が重要である.よって、より精緻な予測を行う場合は、 二相流パラメータの設定が重要であることが分かった. なお、本報告は経済産業省資源エネルギー庁からの委託 による「平成 30 年度低レベル放射性廃棄物の処分に関す

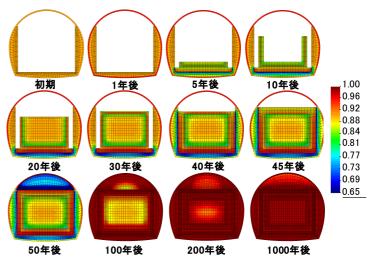


図-3 飽和度分布(変形倍率:1倍)

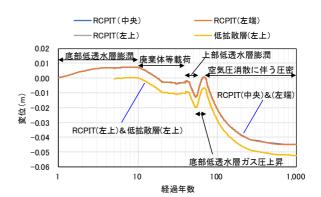


図-4 RCピットの鉛直変位の経時変化

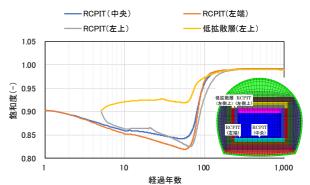


図-5 RCピットの飽和度の経時変化

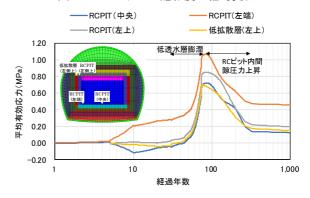


図-6 RCピットの平均有効応力の経時変化

る技術開発事業(地下空洞型処分施設機能確認試験)」の成果の一部である.

参考文献 1)藤原ほか: 地下空洞型処分施設機能確認試験の事業概要-地下空洞型処分設備機能確認試験(その 1)-, 土木学会第72回年次学術講演会, 2017年, 2)UPC: CODE_BRIGHT User's Guide 2018., 3) E. E. Alonso, et. al.: A Constitutive model for partially saturated soils, Geotechnique, 40, No. 3, 1990.