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1. INTRODUCTION 
The frost heaving of frost-susceptible subgrade is a major problem at the railway operations in cold regions. It causes 

large track irregularity so as to increase train vibration and affects the riding comfort and operational safety of railway 

transportation. This study focuses on estimating train vibration accelerations due to the deformation of railway structure 

subject to frost heave and thaw settlement, and proposing some constructive countermeasures for railway engineering. 

2. METHODOLOGY 
Fig. first, a coupled thermo-hydro-mechanical (THM) analysis for the freezing behavior (Luo et al., 2017) was employed 

to estimate the track deformation for a railway section located above a box culvert. Next, the vehicle response due to 

track irregularity in frost heaving area was estimated by a parametric Auto-Regression model with eXtra inputs (ARX) 

(Furukawa, 2004). Furthermore, the effect of operational speed (OS) down on vehicle vertical acceleration was also 

estimated. In the end, we evaluated the riding comfort and safety issues. 
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Fig. 1 Research Flow Chart 

3. MODEL DESCRIPTION 
Fig. 2 shows the ballasted track structure model with a box culvert, which can directly reflect the track deformation due 

to frost heaving. The input parameters are listed in Table 1. By preliminary calculations, the size and meshing could 

completely reflect the freeze-thaw phenomenon. The iterative initial steady-state analysis was performed for six years to

achieve a stable condition before calculate the  

displacement induced by frost heave. 
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(b) Diagram of Ballast Rail Structure 
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(c) Boundaries 

Fig. 2 Model and Constraint Boundaries 
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Table 1 Input Parameters for the Numerical Simulation 

Sym Unit Name of Parameters Rail Ballast Sleeper Roadbed Culvert Subgrade 

E1 MPa Young's Modulus before Frost heaving 210000 50 35000 200 21700 40 

E2 MPa Young's Modulus after Frost heaving 210000 400 35000 469 21700 40 

ν / Posson’s Ratio 0.3 0.35 0.17 0.35 0.2 0.33 

ρ MN/m3 Specific Weight 0.077 0.01667 0.02334 0.01942 0.02354 0.013533 

C J/m3°C Volumetric Heat Capacity 3756000 1700000 3030000 1800000 2400000 966000 

λ J/mh°C Thermal Conductivity 216000 6120 5940 1836 5580 5796 

hh J/mh°C Convection Coefficient of Exposed Surface / 50400 50400 / 50400 / 

α 1/°C Thermal Expansion Coefficient 1.2×10-5 1.0×10-5 1.0×10-5 8.0×10-6 1.0×10-5 1.2×10-5 

kij0 m/h Saturated Hydraulic Conductivity 0 1.8 0 0.1908 1.5×10-9 3.6×10-5 

n % Porosity 0 41 0 31.973 5 45.2 

 
By conducting water interception, the track deformation was estimated under several different groundwater levels (WL). 

Moreover, WL is controlled by giving different values to the constant hydraulic pressure boundary. Besides, we collected 

the maximum value of vertical displacement at the rail surface (20m on Y-axis) on the freezing process and converted it 

into 10m-chord versine (see Fig. 3(a)). And then transfer it to irregularity which is used to estimate vertical accelerations 

by ARX model. 

4. RESULTS AND DISCUSSION 

As seen in Fig. 3 (a), with WL lowering down, the longitudinal level irregularity induced by frost heaving is decreasing. 

Especially when WL=-1.4m, it is above the standard control value for maintenance work. From Fig. 3 (b), the 

corresponding Peak to Peak (P-P) value of vertical carbody acceleration is also decreasing with WL. Notably, when WL 

is parallel to the top surface of the culvert (-3.3m), the P-P decreases to its minimal. Besides, it is clear to see that the OS 

is linearly related to the P-P. In order to reduce the vibration to the safety limit of advanced train (Otsuka et al., 2003), a 

speed cut of approximately 20% ~30% is necessary. 
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(a) Estimated Frost Heave Amounts (10-chord versine) 
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(b) Estimated Vehicle Responses 

Fig. 3 Simulation Results 

5. CONCLUSIONS 
▪ The coupled THM analysis can reproduce the real freeze-thaw phenomenon considerably and estimate the frost heave 

amount along the rail surface. Besides, ARX model can precisely predict the vehicle response to the track deformation 

due to frost heaving. It is expected to widely use ARX model to estimate vehicle responses in railway engineering. 

▪ The P-P is exponentially decreased with the decrease of WL, while linearly decrease with lowering of OS. Therefore, 

we conclude that both water interception and speed down operation are functional; however, the water interception is 

more efficient since the P-P value would decrease to its lowerest once the WL is lowering to the top surface of culvert. 
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