# 急勾配・急曲線部における実測データによるシールド挙動シミュレーション

長岡技術科学大学 学 〇山之内崇記 勝部達也 正 杉本光隆 清水建設株式会社 正 安井克豊 武本怜真

# 1. はじめに

シールドトンネルは近年,大深度化や急曲線化によ る施工技術の高度化が進み,より厳しい条件下での施 工が求められている.しかし,シールド掘削に関連す る地盤物性値やシールド機に作用する外力および施 工時荷重については未解明な点が多い.そのため,事 前にシールド機挙動を予測することが重要となって いることから,シールド挙動シミュレーションの必要 性が高まっている.

既往の研究<sup>1)</sup>では, 直線部におけるシールド挙動の 妥当性を検討した.本研究では, シミュレーションを 取り入れたシールド制御手法を確立することを目的 とし, 急勾配・急曲線部におけるシールド挙動シミュ レーションと実際の現場の実測データを比較するこ とで, シールド挙動シミュレーションの妥当性を検討 した.

### 2. 現場概要

解析対象現場は、市街化された地域に新設されたため、既設構造物による制約を受けている.図1に本シールドトンネルの平面図およびセグメント割付図

を示す.

解析対象区間の土被りは 10.0m ~ 15.0m で,地層は 相模層群粘性土 (Dc 層) である. N 値は全体として 概ね N=1~10 前後であるが,局所的に N=15~26 程度 を示す.シールド機は中折れ式泥土圧シールドで,機 長 10.845m,掘削外径 10.860m,シールド機外径 10.830m である.

シールドトンネルの線形は下り-7.0%,最小曲線半径50mで,セグメント外径10.58m,セグメント幅0.6mの鋼製セグメントで構築された.

# 3. 解析方法

解析手順は,以下の手順で行う.

1)入力データの作成

2)地盤条件の推定

3)シールド機挙動シミュレーションの実施

4)現場実測データとの比較

#### 3.1. 入力データの作成

シールド機設計図やボーリング柱状図などの現場 データにより,以下の入力データを作成する. a)シールド機諸元:マシン半径,自重,重心など



キーワード シールドトンネル,地下構造物,シミュレーション,急曲線,急勾配 連絡先 〒940-2188 新潟県長岡市上富岡町1603-1 地盤工学研究室 TEL 0258-46-6000 b)地盤物性値:静止土圧係数,地盤反力係数などc)計算条件:解析メッシュ(要素)の数などd)計測精度

e)シールド掘進管理条件:ジャッキ,中折れ角度など f)計画線形:曲線半径,勾配など

g)地層構造:地下水位,地質縦断図

 h)セグメント諸元:セグメント割付、半径、幅など シールド挙動の制御条件は、中折れやコピーカッタ
一使用条件などである.解析結果と現場計測結果が一 致するように、地盤物性値や、有効余掘り量を適宜変
更した.シールド機挙動は、切羽土圧、掘進距離の影
響を大きく受けるため、縦断線形、掘進速度、平面線
形の順で現場計測結果と合わせるようにした。

#### 3.2. 地盤条件の推定

ボーリング調査により,現地の地盤条件が得られる. しかし,実際の地盤物性値はばらつきがあることから, シールド機の挙動に大きな影響を与える地盤反力等 を同定する必要がある.また,掘進時に余掘りを行う が,取り残し等があるため,周方向とシールド掘進方 向に分布する余掘り有効率を調整する.

3.3. シールド機挙動シミュレーションの実施

「3.1. 入力データの作成」および「3.2. 地盤条件の 推定」で設定したデータを、シールド機動力学モデル に入力し、シールド機挙動シミュレーションを行う.

# 4. 解析結果と考察

平面線形,縦断線形,ピッチング角度,掘進速度の 計測値と解析値をそれぞれ図2,図3,図4,図5に 示す.これらの図より以下のことがわかる.

 平面線形は解析値と計測値がよく一致している.
縦断線形とピッチング角の解析値と計測値の時系 列変化は概ね一致しているが,縦断線形は解析値が計 測値より最大で約18cm下になった.これはシミュレ ーション開始前のシールド機位置座標の実測データ 数が少なく,実測データの間隔が空き,曲線近似度が 下がり,3次元的に拘束条件が緩くなり,シミュレー ション開始時にピッチングが計測値よりも約25min 下向きになったためと考えられる.

3) 掘進速度は計測値と解析値が一致している.

上記から,運動力学的にシミュレーション結果が計 画線形と概ね一致しているといえる.

5. まとめ

シールド挙動シミュレーション結果は,現場実測デ





図5 掘進速度

ータを概ね表現できたことから,本研究で用いたシー ルド機動力学モデルにより急勾配及び急曲線部のシ ールド挙動を表現できるといえる.

# 参考文献

1) 岩渕崇宏,相馬裕希,杉本光隆,武本怜真,安井 克豊,シールド機動力学モデルによるシールド挙動シ ミュレーション,第73回土木学会年次学術講演会, VI-146,2018.