関東ロームの平面ひずみ三軸試験について

JR 東日本 東京工事事務所 正会員 〇LI CHENG 正会員 加藤 精亮 応用地質(株) 非会員 柿原 芳彦 正会員 植村 一瑛

1. 目的と背景

首都圏の駅改良工事においては,関東ロームを掘削 し,構造物を構築することが多い.関東ロームの力学 特性などを正確に評価することで,合理的に構造物を 設計することが可能となる.今回,長期荷重に対する 地盤の安定性を評価するために,平面ひずみ三軸試験 を実施した.本稿では,関東ロームに対して実施した 平面ひずみ三軸試験の結果について報告する.

2. 試験概要と内容

2-1 土の物理試験

本検討では、3箇所(上野,原宿,新大久保)で関東 ロームのブロックサンプリング(20cm×20cm×20cm) を行い,基本物性を把握するため、土粒子の密度・含 水比・粒度・湿潤密度試験などの物理試験を実施した

(表-1). 今回サンプリングした土試料は一般的な関 東ロームの物理特性⁽¹⁾と同等の値を示した.3箇所の土 試料の物理特性を比較すると,新大久保のロームは含 水比,塑性指数ともに大きく,軟質な傾向である.

表-1 上野, 原宿, 新大久保の土試料の物性値

	試	料		上野	原宿	新大久保
-	湿潤密度	$\rho_{\rm t}$	g/cm ³	1.206	1.316	1.275
	乾燥密度	$\rho_{\rm d}$	g/cm ³	0.591	0.656	0.555
	土粒子の密度	ρ_s	g/cm ³	2.805	2.817	2.768
般	自然含水比	w n	%	104.1	100.6	129.6
	間 隙 比	е		3.747	3.294	3.985
	飽和度	S _r	%	77.9	86.0	90.0
粒	石分(75mm」	以上)	%	0.0	0.0	0.0
	礫分(2~7	'5mm)	%	0.0	0.0	0.0
	砂分(0.075~	2mm)	%	5.8	2.1	3.9
	シルト分(0.005~0.0	175mm)	%	31.8	38	25.1
度	粘土分(0.005mm未満) %			62.4	59.9	71
	最 大 粒 径		mm	0.85	0.85	0.85
	均等係数	U _c				
	50% 粒 径	D_{50}	mm	0.00173	0.00199	
	10% 粒 径	D_{10}	mm			
	塑性指数	I _p		48.1	41.2	58.8
	圧密降伏応力	P _c	kN/m²	472	1093	333
分類	地盤材料の分類名			砂まじり火山灰 質粘性土(II型)	火山灰質粘 性土(Ⅱ型)	火山灰質粘 性土(Ⅱ型)

2-2 平面ひずみ三軸試験

平面ひずみ三軸試験は掘削土留め工の受働側の応力 状態(図-1)を想定し,掘削深さ1m~4mのそれぞ れのケースで,以下のステップで試験を実施した. STEP1. 異方圧密:(Ko=0.5)で初期応力状態再現 STEP2. 除荷クリープ:掘削後の一定応力状態再現 STEP3. 供用クリープ:土留め工背面側の上載荷重載

キーワード 関東ローム,地盤の長期安定性,平面ひずみ三軸試験
連絡先 〒151-8512 東京都渋谷区代々木二丁目2-6 JR新宿ビル
東日本旅客鉄道株式会社 東京工事事務所 工事管理室 TEL03-3379-4353

荷後の一定応力状態再現

STEP4. STEP3 までの試験終了後, せん断試験を実施. 掘削深さ 1~3m では, STEP3 終了後, 非排水せん断を行う. 掘削深さ 4m では, クリープ破壊を 生じる極限の応力状態を確認するため, 段階的に 軸差応力を増加し, クリープ破壊させた.

土留め工の設計法は二次元の平面ひずみ問題として 取り扱っており,平面ひずみ三軸試験の実施により, 実地盤に近い応力状態を再現することが期待できる.

平面ひずみ三軸試験の応力条件(軸応力,側方応力) は FEM 解析により設定した.本検討では,表-2に示 す6ケースの試験を実施した.Case1~3により,サン プリング場所(ローム性状の違い)による影響を検討 し,Case3~6にて掘削深さの違いによる影響の検討を 行った.

表-2 平面ひずみ三軸試験ケース

ケース	地点	掘削深さ (m)	検討項目	有効上載圧 o'a (kN/m²)	有効側圧 ơ' _r (kN/m²)
Case1	上野	3	ローム性状の影響		
Case2	原宿	3	ローム性状の影響	STEP1 55.0 STEP2 55.0	STEP1 27.5 STEP2 2.5
Case3	新大久保	3	ローム性状の影響 掘削深さの影響	STEP3 85.0	STEP3 7.5
Case4	新大久保	1	掘削深さの影響	STEP1 30.0 STEP2 30.0 STEP3 60.0	STEP1 15.0 STEP2 9.0 STEP3 14.0
Case5	新大久保	2	掘削深さの影響	STEP1 43.0 STEP2 43.0 STEP3 73.0	STEP1 21.5 STEP2 6.5 STEP3 11.5
Case6	新大久保	4	掘削深さの影響	STEP1 68.0 STEP2 68.0 STEP3 98.0 STEP4 +20.0 - デーク	$\begin{array}{ccc} {\rm STEP1} & 34.0 \\ {\rm STEP2} & 1.0 \\ {\rm STEP3} & 6.0 \\ {\rm STEP4} & +0.0^{-3^{2}} \end{array}$

3. 試験結果と検討

3-1 ローム性状の違いによる影響(Case1~3)

ここで、一定応力状態における ϵ ~logt 関係の勾配を クリープひずみ速度 ϵ とする. 図-2に Case1~Case3 の各クリープ過程の軸ひずみに対する ϵ の比較(左上)、 圧密降伏応力 p_e との関係(右上)・塑性指数 I_e との関 係(右下)を示す.軸ひずみに対する ϵ は Case2>Case1 >Case3 の順となり、圧密降伏応力 p_e との関係性で見 ると、 p_e が大きいほど、 ϵ が大きくなる(変形しやすく なる)傾向を示した.また、塑性指数 I_e との関係性に ついては、 I_e が小さいほど、 ϵ が大きくなる(変形しや すくなる)傾向を示した.なお、側方ひずみ・体積ひ ずみに対する二次圧密係数に関しては p_e および I_e との 明瞭な相関が見られなかった.

一方で、図-2の左下に STEP4 における応力ひずみ 関係を示し、新大久保の土試料は明瞭なピークが見ら れたが、原宿と上野の土試料には見られなかった.

3-2 掘削深さの違いによる影響(Case3~6)

軟質な傾向を示した新大久保の土試料を用いて, 掘 削深さ 1m, 2m, 4m (Case4~Case6)

の試験を実施した.

Case6 の STEP4: クリープ破壊過 程において,軸差応力は 152kN/m² に増加した時点でクリープ破壊が発 生した.破壊時の土試料は図-3に 示すように,明瞭なせん断面が見られた.

図-4に新大久保土試料の ε とせん断応力比の関係 を示す. せん断応力比は各クリープ段階における軸差 σ'_2)/3)の比であり、これが大きいほど想定される掘削 深さが深くなる.除荷クリープ過程、供用クリープ過 程により、 ϵ とせん断応力比の関係を得ることは困難で あったが、Case6の軸差応力増加過程も含めて見ると、 ϵ が急激に大きくなる点(上限降伏値)が見られた.本 試験では、上限降伏値は軸ひずみに対して q/p'=2.15、 側方ひずみに対して q/p'=2.20 となり、限界状態線 M=2.51 (Case3~5 のせん断過程で求めた限界状態線 M 値の平準値)に比べ、それぞれ 0.86 倍、0.88 倍とな った.既往文献⁽²⁾によると、土の上限降伏値は破壊強度 の 0.5~0.7 倍と言われており、それに比べると今回の 関東ロームの上限降伏値はやや高めであった.

せん断応力 q=(σ'a-σ'r)と平均有効応力 p'=((σ'a+σ'r+

4. まとめ

平面ひずみ三軸試験の結果を以下にまとめる.

- ① 圧密降伏応力 p_{c} が大きいほど、もしくは塑性指数 I_{p} が小さいほど、クリープひずみ速度 $e_{(hau f a)}$ が大 きくなる (変形しやすくなる).
- ② クリープ破壊を生じる限界の応力状態はピーク強度の 0.8 倍程度であった.

今回の平面ひずみ三軸試験結果から得られたクリー プ破壊を生じる極限の応力状態を用いて,関東ローム の降伏状態を照査する新たな設計照査フロー等,合理 的な構造物設計法の構築が期待できる.

参考文献

- (1) 地盤材料試験の方法と解説,平成21年11月,一 般社団法人 地盤工学会
- (2) 土の力学挙動の理論, 平成2年10月, 村山朔朗

図-3 破壊した土試料