BIM モデルから自動生成した FEM 解析モデルによる PRC ランガー桁の解析的検討

東日本旅客鉄道株式会社	正会員	○髙島	いぶき
東日本旅客鉄道株式会社	正会員	山本	達也
東日本旅客鉄道株式会社	正会員	竹谷	勉

1. はじめに

当社では、生産性向上を目指して、設計・施工会社とのデータ共有サーバ(BIM クラウド)を介して調査・計画段階から維持管理まで一貫した情報のやり取りを行う、JRE-BIMの推進に取組んでいる。今後、部材に属性情報が与えられた 3D モデル(以下 BIM モデルと記載)を設計成果物とすることを検討している。本検討では、将来的な BIM モデルの活用方法検討の一環として、当社管内で施工中の開床式 PRC ランガー桁(図-1)を対象に、モデルから自動的に要素分割し FEM モデルを作成するとともに、FEM モデルと3 次元骨組解析との結果を比較したので報告する。

側面図 支間中央部 断面図 橋長7110 S 1020 1080 400 起点力 終点方 2200 スパン 68500 1150 F 平面図 ゴム支承 610×810×92 橋長 71100 析長 70800 鋼角ストッパ 400×400×22 1200 1200 600 1200 1200 1200 2700

2. FEM モデルの自動生成

FEM モデルは、3D モデルを自動メッシングと互換性の良い STL データに変換し作成することができる.本検討では、 BIM モデルが STL データに変換可能であることを前提に BIM モデルを作成し(図-2)、自動メッシングソフトにインポ ートすることによる要素分割の自動化を検討した.要素自動 分割の結果、補剛桁・横桁の接合部等においてエッジの処理 が適切に行われていない箇所があったため、本検討では適宜 処理を行った.また、要素サイズについては使用ソフトの演 算端末の性能を鑑み、一辺の長さが 200mm となる TETRA 要素の集合体とした(図-3).

3. FEM 解析結果の検証

3-1. FEM モデルの解析条件と物性値

(1) 主桁自重: 材料物性値から自動載荷

(2) 固定死荷重:弾性バラスト軌道,桁端部路盤コンクリート

比と断面積比を考慮し換算した単位体積重量と弾性係数を用いた.

キーワード鉄道, PRC ランガー桁, BIM, FEM 解析連絡先〒980-8580 仙台市青葉区五橋一丁目1番1号 東日本旅客鉄道(株) 東北工事事務所

起点方を固定,終点方を可動とし,各々対象自由度を拘束した.鉛直方向の拘束範囲は支承サイズと同寸法とし,

図-1 PRC ランガー桁一般図

図-2 モデル作成に使用した 3D モデル

図-3 FEM モデルにおけるエッジの処理(スラブ開 口部) (3) 付加死荷重:ダクト, 電車線,開口部グレーチ ング材

表-1 使用材料諸元

	コンクリート部材	鉛直材	
単位体積重量	24.5kN/m3	※ 30.0kN∕m3	
設計基準強度	50N/mm2	50N/mm2	
弾性係数	33,000N/mm2	※60,700N∕mm2	
ポアソン比	0.2	0.2	
※網签(折回(4mm)) 新西な老虎した梅笛値			

	材料物性 人刀值
	PC鋼材
主ケーブル	SWPR7BL 12S15.2 8本
横締ケーブル	SWPR7BL 12S15.2 29~33本
鉛直材	SWPR19L 1S28.6 2本

L DAD IV. DI

(4) 各プレストレス:導入軸 力は方向成分を考慮し た有効プレストレスとし,ケーブル曲上げ箇 所と同位置の要素内部に鉛直分力を相殺する 腹圧力を載荷した.

3-2. FEM 解析結果と3次元骨組解析結果の比較

本検討で使用した FEM モデルの概要図と座標軸, 各応力の計測位置を図-4に示す.表-3.4に示すよう に、支点反力、レール受桁鉛直変位は、FEM 解析結 果と3次元骨組解析結果が概ね一致した結果となっ た.また表-5における補剛桁の曲げ最大位置での軸 方向縁応力度は、FEM 解析結果のプレストレスによ る圧縮応力度が約8%大きくなっているが、死荷重 による発生応力度は骨組解析モデルの結果と概ね一 致する.一方で、表-6に示すアーチリブスプリンギ ング部直下の縁応力度は,図-5に示すアーチリブに 生じる軸力の鉛直分力により、3次元骨組解析結果 と大きくかい離が生じた.これは,FEM 解析では支 点よりスパン中央部側でアーチリブと補剛桁が接 合しているのに対し、3次元骨組解析ではアーチリ ブと補剛桁が支点で接合しているため,当該箇所に 生じる曲げが小さい構造となるためである.

4. 今後の課題とまとめ

本検討では、将来的な BIM モデルの活用方法検討 の一環として、開床式 PRC ランガー橋を対象に、 BIM モデルから自動生成により得られた FEM 解 析モデルと、3次元骨組解析モデルの結果を比較 した.以下に知見を示す.

- (1) 自動メッシングソフトによる FEM モデルの 作成においては、図-3に示すエッジの処理が 適切ではない箇所が生じた.
- (2) 支点反力, 補剛桁軸方向縁応力度, 最大鉛直 変位について、3次元骨組解析の結果と概ね一 致した.
- (3) アーチリブスプリンギング部直下については, アーチリブに生じる軸力の鉛直分力により、3 次元骨組解析では考慮していない縁応力が生 じた.

※鋼管(板厚 6.4mm)断面を考慮した換算値

図-4 FEM モデルでの座標軸と各応力の計測位置

表-3 解析結果比較 (支点反力) 起点方 3次元 FEM解析 骨組解析 反力 右側 3,651 3,637 3,724 3,769 左側 計 14,750 14,813 (単位:kN/mm²)

		,
	3次元 骨組解析	FEM解析
	下縁	下縁
鉛直変位	-7.5	-7.5

表-4 解析結果比較

(レール受桁 鉛直変位)

(単位 mm)

表-5 解析結果比較 (G4 補剛桁 軸方向縁応力度)

	3次元骨組解析		FEM解析	
	上縁	下縁	上縁	下縁
プレストレス	-5.4	-7.1	-5.6	-7.7
死荷重	0.3	5.2	0.7	5.1
計	-5.1	-1.9	-4.9	-2.6
符号(+):引張 (単位:N/mm ²)			2)	

表-6 解析結果比較 (アーチリブスプリンギング部直下

縁応力度)				
	3次元骨組解析		FEM	解析
	上縁	下縁	上縁	下縁
プレストレス	-4.7	-4.5	-2.2	-4.
死荷重	3.5	1.0	-2.3	4.0
計	-1.1	-3.4	-4.4	-0.

符号(+):引張

(単位:N/mm²)

(b)3 次元骨組解析 図-5 アーチリブスプリンギング部直下概要

支点上で部材剛結