分割された FFU セグメントの継手の開発(圧縮試験)

| 錢高組    | 正会員 | ○原田 | 尚幸  |
|--------|-----|-----|-----|
| 大成建設   | 正会員 | 西田  | 与志雄 |
| 積水化学工業 |     | 髙見  | 昂亮  |

# 1. はじめに

硬質発泡ウレタンをガラス長繊維で補強した複合材料である FFU を用いてシールド機による直接切削を容易にした分割された FFU セグメントの継手を開発した.本編では、FFU セグメントのほぞ形式のセグメント 継手の性能確認試験の内,圧縮試験について報告する.

### 2. ほぞ継手構造と材料特性

継手を有する FFU セグメントは、薄い FFU74 板をほぞ形 状になるように接着積層し、嵌合精度の確保のため、嵌合 部の表層をウレタン樹脂で成型した構造とした(図-1). FFU74 と成型樹脂の基本物性を表-1 に示す.成型樹脂は FFU74 の繊維方向と同等以上の圧縮強度となるようフィラ ー(水酸化アルミニウム粉末)を配合したウレタン樹脂を 選定した.

#### 3. 縮小モデルでの圧縮試験

(1) 試験方法

FFU セグメントのほぞ継手は軸力が卓越し全断面圧縮と なることから圧縮試験を実施した. ほぞ形状比(ほぞ幅 b /ほぞ深さ d) を 2 として縮小モデルで一軸圧縮試験を行っ た. 試験体は w60mm×h100mm×L200mm とし, ほぞ寸法は 実物の 1/2 と 1/3 モデルで設定した. また, 樹脂厚みによる 圧縮強度への影響を確認するため, 3 種類の樹脂厚み(2.5mm, 5mm, 10mmm) で試験を行った. 試験数は FFU74 単体を 3 体, ほぞ継手ありは 1/2 モデル, 1/3 モデルともに各樹脂厚 1 体ずつとした.

(2) 試験結果

試験結果を表-2 に示す. ほぞ継手ありの試験体の圧縮強 さは, FFU74 単体に比べ約 85%程度となった. 破壊形態は, FFU 単体の場合は載荷点付近の座屈破壊, ほぞ継手ありの 試験体は, 載荷点付近および FFU と樹脂の界面の座屈破壊

となった.また、樹脂厚みが 2.5mm と薄い場合、成 型樹脂の突合せ面にも圧縮破壊がみられ、強度が小さ くなる傾向にある.これは FFU のガラス長繊維が圧 縮力で成型樹脂に貫入したことによる局所的な応力 集中が原因であると考えられる.樹脂厚を 5mm 以上 とすることで突合せ面の破壊が緩和されたため、樹脂 厚は 5mm 以上として設計することとした.



写-1 ほぞ継手製作状況

表-1 FFU74 と成型樹脂の物性

|               | FFU74 | ウレタン樹脂  |
|---------------|-------|---------|
| (23°C)        | 繊維方向  | (フィラー入) |
| 比重            | 0.74  | 1.65    |
| 圧縮強度 [N/mm2]  | 63.1  | 67.2    |
| 圧縮弾性率 [N/mm2] | 11290 | 3880    |



写-2 縮小モデル試験体の破壊状況(1/2 モデル)

表-2 縮小モデル試験結果

|                            | 樹脂厚  | 破壊荷重  | 圧縮強度    | 対   |
|----------------------------|------|-------|---------|-----|
|                            | [mm] | [kN]  | [N/mm2] | 単体比 |
| FFU 単体(N3 平均)              | —    | 459.2 | 76.5    | —   |
| ほぞ継手あり<br>(桁高 200 1/2 モデル) | 2.5  | 378.4 | 63.0    | 82% |
|                            | 5.0  | 397.3 | 66.2    | 87% |
|                            | 10.0 | 397.3 | 66.3    | 87% |
| ほぞ継手あり<br>(桁高 300 1/3 モデル) | 2.5  | 373.6 | 62.1    | 81% |
|                            | 5.0  | 399.4 | 66.5    | 87% |
|                            | 10.0 | 383.7 | 64.0    | 84% |

キーワード セグメント,分岐合流,ほぞ継手,圧縮試験,FFU
連絡先 〒102-8678 東京都千代田区一番町 31 錢高組 技術本部 技術研究所 TEL03-5210-2440

### 4. 実大モデルでの圧縮試験

## (1) 試験方法

FFU 形状□200×200, ほぞ形状比を 2, 樹脂厚を 5mm として 実大モデルの一軸圧縮試験を行った. 試験体は単体 1 体, ほぞ 継手 2 体の 3 体で実施した. 載荷方法は, 初期段階は荷重制御 で行い, その後 1500~2200kN で変位制御に切り替えた.

(2) 試験結果

試験結果を表-3 に示す. ほぞ継手ありの試験体の圧縮強さは, FFU74 単体に比べ 90%程度の圧縮強度となった. ほぞ継手なし の試験体は上下の載荷点付近の座屈破壊となったが, ほぞ継手 ありの試験体は上下の載荷点付近の座屈破壊に加えて, ほぞ継 手の樹脂-FFU 界面の座屈破壊となった. 荷重と鉛直変位の関 係を図-3 に示す. 荷重と鉛直変位の関係は全ての試験体で同じ 傾向を示し, 圧縮応力 55N/mm2 付近までは比例関係で, その後 は変形が伸びるようになった. 圧縮応力 55N/mm2 付近では, ほ ぞ継手は単体に比べて 20%程度変位量が大きくなった. ほぞ継 手-1 の荷重と鉛直ひずみの関係を図-4 に示す. 圧縮応力とひず みの関係は破壊までほぼ比例関係であった. ほぞ継手面の上下 ではひずみ量に差はほとんど見られなかったが, 断面で整理す ると F3-F6 断面のひずみは他の断面に比べて 2000(µ)程度小さ くなっており, 長さに換算すると約 0.8mm 程度の微小な片当り が生じていたことが確認できた.

ほぞ継手の圧縮耐力が低下した原因は,縮小モデルの試験と<sup>世</sup> 同様に,成型樹脂にガラス繊維が貫入し,ほぞ継手部に局所的 な応力集中が発生したことや片当りが発生したことが考えられ る.また,ほぞ継手の変位量が単体に比べて大きいのは成型樹 脂の弾性率が FFU74 繊維方向より小さいためと考えられる.

シールド径 6m, 砂地盤 N=10, FFU 配置角度 120°, 土被り 50m の条件での FFU セグメントの試設計では, ほぞ部に発生す る軸力は 3625kN で圧縮応力に換算すると約 12N/mm2 となり, 試験値が十分安全であることが確認できた.

#### 5. おわりに

FFU セグメントにおけるほぞ継手の圧縮試験を行い,実用的なほぞ継手の耐力を確認できた.以上より,ほぞ継手の圧縮耐力は,FFU 単体の 80%の耐力で設計を行うこととする.



写-4 破壊部拡大写真





写-3 実大モデル試験状況



表-3 実大モデル試験結果

|          | ほぞ<br>幅<br>[mm] | ほぞ<br>深さ<br>[mm] | 破壊<br>荷重<br>[kN] | 圧縮強度<br>[N/mm2] | 対単体比 |  |
|----------|-----------------|------------------|------------------|-----------------|------|--|
| FFU74 単体 | _               | —                | 2697             | 67.4            | —    |  |
| ほぞ継手-1   | 60              | 30               | 2534             | 63.4            | 94%  |  |
| ほぞ継手-2   | 60              | 30               | 2492             | 62.3            | 92%  |  |