山岳トンネルにおける分割型プレキャスト覆工の設計

(一社)日本建設機械施工協会 施工技術総合研究所 正会員 真下 英人 正会員 井野 裕輝 清水建設(株) 正会員 〇山田 健明 正会員 鹿島 竜之介 (株)IHI 建材工業 夏目 岳洋

1. はじめに

山岳トンネルにおける生産性向上を目的に,分割型プレキャスト覆 工架設システムの開発を行っている. 本システムにおける, プレキャス ト覆工(以下, PCa 覆工)は、坑内交通の確保および組立性能の向上を目 的とし、トンネル上半1リング6分割を想定した。また、継手には省人化 を目的として、シールド工事で実績のあるワンパス型の継手(ピース 間:くさび継手,リング間:ピン挿入型継手)を想定した.本稿では,本 システムに使用する PCa 覆工に関して,実施した設計について報告す る.

回転バネ ピン支点 10740mm

図-1:構造モデル

STEP1

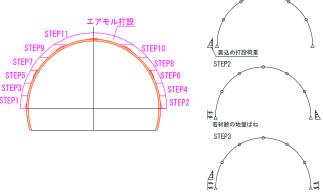
2. PCa 覆工の設計

PCa 覆工の設計は、覆工本体をはり、ピース間のくさ び継手を回転ばねとして、はり-ばねモデルで検討を行 った. また, 脚部の側壁コンクリートとの連結部はピン 支点とし,リング間はイモ継ぎとした.構造モデルを, 図-1 に示す.

構造計算は、リング組立後の自立状態(STEPO),裏 込め注入時の偏圧載荷状態 (STEP1~STEP11), 裏込め 注入後の地山荷重の載荷状態(STEP12)について,実

施した. 裏込め注入時の偏圧載荷状態では, 裏込め注入ステップに沿っ た裏込め注入圧を各ステップの打設荷重とした. 裏込め注入ステップ を図-2 に示す. 裏込め注入圧は, 液圧として部材に作用させ, 硬化後は 地盤ばねとして解析を行った.また,裏込め注入時の偏圧載荷状態で発 生する応力度は残留するものとして、断面力を累積加算した. 裏込め注 入後の地山荷重の載荷状態では,文献 1)を参考に設定した緩み高さ 3.1m および側方土圧係数を 0.75 とした荷重条件で算出した緩み土圧を 用いた.

断面力図を図-3 に示す. リング組立後の自立状態では、トンネル頂部 が沈下する結果となり、最大変位量は下方向に 8.86mm であった.一方、 裏込め注入の進行に伴い,側部が内面側に押されトンネル頂部では隆 起する傾向となった,裏込め注入時の偏圧載荷状態において,曲げモー メントが最大となった STEP9 および裏込め注入後の地山荷重の載荷時 (STEP12)では、最大変位量はそれぞれ、上方向に 16.39mm, 14.25mm と なった. 部材仕様は、これらの計算結果を用い、許容応力度設計法によ り決定した(図-4,表-1).



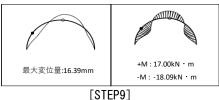


図-2: 裏込め注入ステップ

変位図 曲げモーメント図

変位図 曲げモーメント図 +M:16.28kN · m 最大変位量:14.25mm -M: -14.67kN · m

[STEP12] 図-3:断面力図

キーワード 生産性向上、プレキャスト、山岳トンネル

- 連絡先〒104-8370 東京都中央区京橋 2 丁目 16-1 清水建設株式会社土木技術本部シールド統括部 TEL03-3561-3892

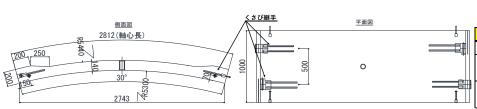


表-1: PCa 覆工の仕様 2

[Pca覆工]					
コンクリート	設計基準強度	40N/mm2			
鉄筋	種類	SD345			
	主筋	D13×8本(内外面)			
継手部	継手種類	くさび継手			
	極于惶殺	D19型			

図-4: PCa 覆工の仕様 1

3. 従来覆工との比較および適用範囲

設定した PCa 覆工と、従来覆工 (厚さ 300mm, 設計基準強度 18N/mm²,無筋コンクリート) との耐力について、終局限界状態での M-N 関係図を用いた比較を行った. 本体部、継手部および従来覆工の M-N 関係図に 2. PCa 覆工の設計で算出した最大断面力をプロットした (図-5). 比較の結果、PCa 覆工は十分な耐力があり、従来覆工に変えて適用することが可能である.

また、地山強度、緩み高さ、水平土圧係数の変化に対する適用範囲を把握するために、対象地山を CIおよび DIIとし、表-2 に示す 4 つの荷重条件における試算を行った. 終局限界状態での M-N 関係図に Case1~Case4 の緩み土圧荷重時の最大断面力をプロットした(図-6、図-7). Case1 と Case3、Case2 と Case4 のプロットを結んだ線と PCa 覆工の M-N 曲線との交点より、線形補間により最大適用土被りを推定した. 従来覆工についても同様の緩み土圧に対する、試算 (図-8、図-9) を行い最大適用土被りを推定した. 一例として、水平土圧係数を 0.75 とした場合の最大適用土被りを表-3 に示すが、いずれの場合も PCa 覆工が従来覆工と同等以上の耐力を有していることが確認される.

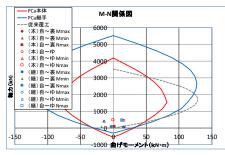


図-5:最大断面力と M-N 関係図

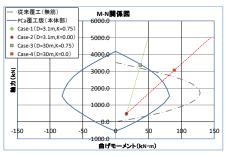


図-6:M-N 関係図(PCa 覆工, C I)

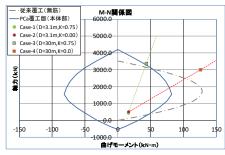


図-7: M-N 関係図(PCa 覆工. DⅡ)

表-2	:荷	重条件	

		Case-1	Case-2	Case-3	Case-4
自重		0	0	0	0
裏込め注入圧		0	0	0	0
鉛直土圧	3.1m	0	0		
	30.0m			0	0
水平土圧係数	0.75	0		0	
	0.00		0		0

表-3・最大適用+被り

X • . 4X/ (2/11 - 1X /				
	C I	DΙΙ		
水平土圧係数	0.75	0.75		
PCa覆工	30m	29m		
従来覆工	24m	23m		

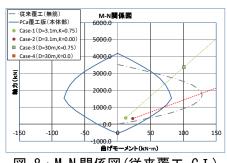


図-8:M-N 関係図(従来覆工, CI)

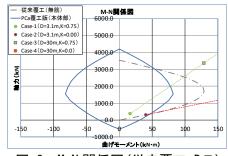


図-9: M-N 関係図(従来覆工, DⅡ)

4. おわりに

変形挙動および組立性能を確認するため,今後,実物大での PCa 覆工の組立試験および載荷試験,架設機械の組立性能確認試験を計画している.

参考文献

1) 「トンネルの変状メカニズム」H15年9月 土木学会