あと施工アンカーを用いた接続部の設計に関する一考察

西日本高速道路㈱	正会員	〇井上 健太
NEXCO 西日本コンサルタンツ㈱	正会員	関 宏一郎
NEXCO 西日本コンサルタンツ(㈱	正会員	児嶋 基成

1. 目的

案内標識や情報板等を橋梁区間に設置する際には, 事前に配置計画を行い,取付部材を予め設置してお くことが前提であるが,やむを得ない場合には橋脚 等のコンクリート躯体にアンカーと鋼製ブラケット を用いて接続する方法が取られる場合がある.しか し,アンカーや鋼製ブラケットの設計にあたっては, 各種基準類を準用して設計を行うと,ブラケットの 張出長が長い場合などには,従来の設計方法では見 込んでいない外力の発生も懸念される.

そこで、本検討では実物大試験体による載荷試験 およびFEM解析を行い、アンカーに発生する軸力 について検討を行った.

2. 実験概要

実験に用いた試験体は、コンクリート版にM24 (埋込み長さ100mm)の金属拡張アンカーを用いて 鋼製ブラケットを接合したものである.試験体概要 を図-1に、アンカー部の詳細を図-2に示す.アン カーおよび鋼製ブラケットのベースプレートにひず みゲージを取付け、ひずみの計測を行った.鋼製ブ ラケットへの載荷は付け根部から 1.65mの位置とし、 単調載荷を行った.

3. 実験結果

載荷荷重と計測したアンカーひずみから求まるア ンカー軸力との関係を図-3に示す.図より,おおむ ね1段目のアンカー(S1~S3)が限界耐力 Pu に達し た時点で最大荷重となっていることがわかる.また, アンカーの最大軸力には約 15%のばらつきがあった. ここで,アンカーの限界耐力はコンクリート躯体の コーン状破壊で決まり,算出式は以下のとおりであ る.

 $Pu = \varphi 2 \times \alpha c \times c \sigma t \times Ac/1000 = \underline{32.2 \text{ kN}}$

Pu:コーン状破壊の耐力

φ2:長期・短期荷重の低減係数であるが、ここ

キーワード:あと施工アンカー,鋼製ブラケット,荷重分担,そりねじり

連絡先:〒567-0871 大阪府茨木市岩倉町1−13 西日本高速道路(株) TEL06-6344-9603

図-2 アンカー部詳細およびひずみ計測アンカー

では1.0とする.

- ac:施工のばらつきを考慮した低減係数ac=0.75 とする.
- cot:コーン状破壊に対するコンクリートの割裂
 強度 cot=0.31×√Fc
- Fc: コンクリート圧縮強度で, 試験結果の平均 値であるFc=38.2N/mm²とする.

また,引張力は1段目,2段目のアンカー(S1~ S4)のみに発生していることがわかる.図-4 に載 荷点直下のS2~S8 アンカーの各荷重時(90kN, 160kN,311kN)のアンカー軸力と鋼製ブラケットの 上縁からアンカーまでの距離の関係を示す.図より, アンカー群の図心位置付近までで引張力が発生して いることがわかる.

図-4 アンカー軸力と載荷面からの距離

4. FEM解析

実験に用いたあと施工アンカーおよび鋼製ブラケ ットをモデル化し,FEM解析を行った.載荷ケー スは案内標識や情報板等への風荷重を考慮し,鋼製 ブラケットに対して鉛直方向(面内載荷)と水平方 向(面外載荷)の2ケースとした.なお,面内載荷 ケースが実験と同様の載荷ケースとなる.解析モデ ルを図-5に示す.

図-5 解析モデル

1) 面内載荷

面内載荷におけるアンカーの軸力分布を表-1 に 示す.実験結果と比較し,おおむね同様の傾向とな っており,アンカーの軸力はアンカー群の図心位置 付近までしか引張力が発生していないことがわかる.

また、リブに挟まれたアンカー(2列目・6列目)

の軸力が他のアンカーと比較して、大きくなってい ることがわかる.実験におけるベースプレートのひ ずみもリブと直交する方向のひずみが大きくなって いたことから、リブによる「てこ反力」の影響によ るものと推察される.

表-1 面内載荷時の軸	力分布
-------------	-----

	(単位:k					単位:kN)	
	1列目	2列目	3列目	4列目	5列目	6列目	7列目
1段目	3. 6	6. 1	3. 7	1. 7	3. 7	6. 1	3.6
2段目	1. 7	3. 5	1. 5	0. 0	1. 5	3. 5	1. 7
3段目	0. 9	1. 7	0. 8	0. 0	0. 8	1. 7	0. 9
4段目	0. 2	0. 3	0. 1	0. 0	0. 1	0. 3	0. 2
5段目	0. 1	0. 0	0. 0	0. 0	0. 0	0. 0	0. 1
6段目	0. 1	0. 0	0. 1	0. 1	0. 1	0. 0	0. 1
		リブ	リブ			117	リブ

2) 面外載荷

面外載荷におけるアンカーの軸力分布を表-2 に 示す.表より,左上および右下に配置されるアンカ ーに大きな軸力が発生していることがわかる.これ はブラケットに作用するそりねじりの影響によるも のと推察される.

表-2 面外載荷時の軸力分布

	(単位:k					単位:kN)	
	1列目	2列目	3列目	4列目	5列目	6列目	7列目
1段目	62. 2	83. 8	37. 7	8. 3	4. 7	3. 0	3. 2
2段目	26. 6	47. 0	17.4	1. 0	5. 7	9. 9	5. 1
3段目	12. 7	21. 5	9. 0	0. 7	11. 0	26. 0	14. 9
4段目	3. 4	2. 9	2. 2	0. 7	16. 1	43. 1	26. 7
5段目	3. 6	2. 3	1.4	1. 1	21. 6	60. 9	38. 5
6段目	4. 1	3. 2	2. 7	1. 8	24. 3	68. 0	45. 7
	-	リプ	リブ			リプ	リブ

5. まとめ

実験・解析結果より,以下の事項が確認された. 1)アンカーの荷重分担は,アンカー群の上端から アンカー群の図心位置までの領域にあるアンカーで 引張力を負担し,アンカー群の図心位置より下側の 領域はコンクリート躯体と鋼製ブラケットベースプ レートの接触面で圧縮力を負担する.

2)鋼製ブラケットのリブによる「てこ反力」の影響により,リブ近傍のアンカーには大きな軸力が作 用する可能性がある.

3) 面外荷重が作用した際に,特にブラケットの張 出長が長い場合は,そりねじりの影響により,対角 線上のアンカーに大きな軸力が発生する可能性があ る.

今後これらの知見をあと施工アンカーを用いた接 続部の設計に反映すべく,引続き検討を進めていく.