圧縮鉄筋が腐食した RC はりの降伏後における挙動

高知高専	学生会員	○國元	陸登
高知高専	学生会員	桑野	仁成
高知高専	正会員	近藤	拓也
高知高専	正会員	横井	克則

1. 目的

引張鉄筋の健全度に基づいた算定法や推定法などについては、維持管理の実務に活用できるまで研究が進行 している。その一方で、腐食圧縮鉄筋を有する RC はりの曲げ挙動については、引張鉄筋が腐食した RC はり と比較して統一的な見解が少ない。しかし、圧縮鉄筋の腐食によるかぶりコンクリートの剥落は、圧縮部コン クリートの断面積を減少させるため、靭性能の減少や、変形の増加などが想定される。そこで、圧縮鉄筋の腐 食による劣化過程を模擬し、電食、もしくは圧縮側コンクリートに欠損が生じた RC はりを作製し、曲げ試験 を行った。そして、圧縮鉄筋が腐食、もしくは断面欠損が生じた RC はりの降伏後の挙動について検討を行っ た。

2. 試験概要

材齢28日に実施したコンクリートの圧縮試験、引張試験、ヤング係数の測定値を表-1に示す。

試験体の概要図を図-1 に示す。試験体寸法は 100mm×200mm×1800mmの矩形断面はりとした。試験要 因を表-2 に示す。パラメータは、圧縮鉄筋の劣化過程を 模擬し、健全試験体(A)と2種類の電食試験体(B、C)、圧 縮鉄筋の腐食が進行し、圧縮部コンクリート剥落を模擬 した試験体(D)、さらには圧縮鉄筋が完全に露出した試験 体(E)、を作成した。曲げ先行型になるように, Vyd/Vmu(Vyd:せん断耐力、Vmu:部材が曲げ耐力に達す るときのせん断力)は曲げ破壊先行型=0.83(<1)とした。表 -2 に示す電食試験体の値は積算電流量を示す。

試験体の支間長は 1600mm で単純支持とし、等曲げ区 間は 200mm、せん断スパンは 700mm の 2 点曲げ載荷と した。載荷方法は 2 点漸増繰り返し曲げ載荷とした。

引張鉄筋が降伏に到達するまでは 5kN 毎の漸増繰返 し載荷を行った。引張鉄筋の降伏到達以降は、降伏荷重 到達時の中心変位を δ とし、 δ 毎に載除荷を繰返し行っ た。載荷は荷重が最大荷重の 8 割に低下するまで行った。 また、中心変位が 106 に到達すると載荷を終了した。

3. 実験結果

3.1 曲げひび割れ性状

曲げ試験終了後の各試験体側面のひび割れ発生状況を 図-2に示す。健全な試験体Aと比較し、コンクリートが 欠損している試験体D、Eでは、等曲げ区間外の欠損部

キーワード 圧縮鉄筋,鉄筋腐食,靭性能,曲げひび割れ

連絡先 〒783-8508 高知県南国市物部乙 200 番地 1 高知工業高等専門学校 TEL 088-864-5659

表-1 コンクリートの材料特性

E縮強度	引張強度	ヤング係数
(N/mm ²)	(N/mm ²)	(kN/mm ²)
40.2	3.40	27.8

表-2 試験要因一覧

試験体名	試験体条件	試験体数
試験体 A	健全	1
試験体 B	圧縮鉄筋の電食 (積算電流量 40hr・A)	1
試験体 C	圧縮鉄筋の電食 (積算電流量 80hr・A)	1
試験体 D	圧縮鉄筋位置まで欠損	1
試験体 E	圧縮鉄筋完全露出	1

に集中するように斜め方向のひび割れが発生した。これは、 圧縮部コンクリートの欠損が大きくなったことで、欠損区間 の曲げ剛性が低下しすることにより、コンクリートの変形が 局所的に大きくなったものと考えられる。そのため、せん断 スパンにおけるせん断変形が大きくなり、曲げモーメントの みならず、せん断力の作用が大きくなったため、ひび割れ発 生方向が変化したものと考えられる。

試験体A、B、Cは、等曲げ区間に圧壊が確認できる。Cに ついては、斜めひび割れが卓越している様子が確認できた。

3.2 降伏荷重後の荷重-変位関係

曲げ試験で得られた試験体 E の荷重-変位関係について図-3に示す。なお、荷重-変位関係はすべての試験体において同 様の履歴ループを示した。試験体 E では、圧縮鉄筋が露出し ているため、6δ載荷時に鉄筋の座屈が確認できた。9δまで到 達すると、座屈した鉄筋が下部のコンクリート圧縮縁に接触 した。次の108載荷時には、最大荷重が増加する傾向が見ら れた。

3.3 最大荷重以降の載荷曲げ挙動

部材靭性を評価するため、部材載荷時に消費するエネルギ ーの累積値と各ループで示す最大変位の関係を図-4に示す。 なお、消散エネルギーは、各載荷ステップにおける曲げ載荷 時に得られる図-3 に示す荷重-変位関係履歴ループの囲む面 積とした。健全なものと電食した試験体の消散エネルギー累 積値は、最大荷重以降同等もしくは低下傾向を示した。それ に対して、鉄筋が露出した試験体 E では、66 目の鉄筋の座屈 以降、他の試験体と比較して累積消散エネルギーの低下が確 認できる。これは、鉄筋の座屈が生じる前は、主に圧縮鉄筋 で圧縮力を負担したため座屈によって変位が増加した。しか し、その後コンクリート上部への接触により、圧縮鉄筋とコ ンクリートが一体化して外力に抵抗したため、荷重の低下は 示さなかったものと考えられる。それに伴い、6δ累積消散エ ネルギーが低下傾向を示したと考えられる。

4. まとめ

本論文では、圧縮鉄筋の腐食、また圧縮側コンクリート断 面欠損が生じた RC はりで曲げ試験を行い、降伏後の挙動に ついて検討を行った。得られた結果を以下に示す。

- (1)曲げ試験の結果、健全試験体と比較し、コンクリートが欠 損している試験体では、等曲げ区間外のひび割れが欠損 部に集中するように斜め方向のひび割れが確認できた。
- (2) 荷重-変位関係は、圧縮部のコンクリートが欠損しても108 到達まで急激な変位の低下が見られなかった。
- (3) 消散エネルギーは、健全や電食試験体は最大荷重以降同等もしくは低下傾向であるが、コンクリート欠損 試験体では、変形が大きく低下傾向を示した。

図-4 累積消散エネルギーと最大変位の関係