デジタル画像相関法による ASR 膨張の面的ひずみ分布評価

太平洋セメント(株)	正会員	\bigcirc	落合	昂雄	早野	博幸
佐賀大学	正会員		伊藤	幸広		

1. はじめに

アルカリシリカ反応(以下, ASR)が生じたコン クリート構造物では,拘束が小さい場合に亀甲状 のひび割れが発生することが知られている. ASR の1次診断ではコンクリート表面に生じたひび割 れやゲル滲出等の目視観察が基本であるが,ASR 特有のひび割れが顕在化する前では一般的な1次 診断を行うことは困難といえる.本研究では,デジ タル画像相関法(以下,DICM)を用いてコンクリー ト表面の面的ひずみ分布を可視化および定量評価 し,ひび割れの発生前のASR膨張挙動を評価した.

2. 実験概要

2.1 使用材料および配合

使用材料を表-1,コンクリートの配合を表-2に示す. 本実験では、ASR を対象とし、セメント由来のアルカ リ量を含め、Na2Oeq が 8.6 kg/m³となるよう NaOH 試薬 を練混水に添加した.なお、単位水量は 170 kg/m³, W/C は 50%とし、20℃環境下での湿布養生 28 日の圧縮強度 は 29.8 N/mm²、静弾性係数は 26.8 kN/mm²であった.

2.2 試験体概要および測定方法

試験体概要を図-1 に示す. 試験体寸法は 400×400×50 mm の無拘束平板とし, 20℃_80%R.H.環境下で作製し た. 材齢 3 日で脱型し, 材齢 7 日まで湿布養生した後, 40℃_95%R.H.以上の環境下となる促進養生を開始した. また, ラインセンサタイプ全視野ひずみ計測装置で計 測したひずみ値とコンタクトゲージ法による計測値を 比較するため, 供試体側面にはコンタクトゲージ測定 用チップ (検長: 250 mm) を固定した.

既報¹⁾と同様に, 試験体測定面のデジタル画像を取得 し, ひずみ分布を測定した. 画像の取得は, ラインセン サタイプ全視野ひずみ計測装置を使用した. 本装置は ラインセンサを用いるためレンズの収差がなく, 高精 細な画像取得が可能である. なお, ひずみ分布は DICM により求めた. DICM は, 変形前後の測定対象物表面の デジタル画像を数値解析し, 解析範囲内の任意の位置

表-1 試験体概要						
材料	産地/銘柄	記号	概要			
水	上水道	W	_			
セメント	普通ポルトランド	C	密度: 3.16g/cm ³			
	セメント	C	Na ₂ Oeq =0.53%			
細骨材	山砂	S	表乾密度: 2.56g/cm ³			
			吸水率:2.33%			
粗骨材		G	表乾密度: 2.69g/cm ³			
	反応性骨材		吸水率:1.60%			
			化学法 ; 無害でない			
			Sc=626mmol/L, Rc=119mmol/L			
試薬	水酸化ナトリウム	NaOH	特級試薬			

表-2 試験体概要

W/C	s/a	単位量(kg/m³)					スランフ゜	空気量
(%)	(%)	W	С	S	G	NaOH	(cm)	(%)
50	45.3	170	340	786	997	8.6	5.0	4.3

ーを水分移動に影響がないように霧状に薄く拭きつけた. なお,画像の取得は促進期間0,21,34,89日に実施した.

3. 試験結果

3. 1 異なる計測手法によるひずみ値の比較

DICM およびコンタクトゲージ法で計測した促進 89 日までの膨張ひずみを図-2に示す.なお,DICMの結果 は 210×375 mm の範囲内のコンタクトゲージ法と同一 方向ひずみの平均値である.促進 34 日までの範囲では, DICM の計測結果がコンタクトゲージ法によるものと ほぼ一致しており,ひずみの差は最大で 50×10⁶程度で あった.一方,促進 89 日では,両手法に 130×10⁶程度 の乖離が生じた.DICM では,ひび割れ部分の変位も見 掛けのひずみ値として解析するため,ひび割れが多数

キーワード:デジタル画像相関法,アルカリシリカ反応,面的ひずみ分布 連絡先:〒285-8655 千葉県佐倉市大作2-4-2 太平洋セメント㈱ 中央研究所 TEL:043-498-3902

図-3 最大主ひずみの変化

存在する条件下ではひずみ値を過大評価する可能性が ある.そのため,前記した乖離はひび割れによる影響と 考えられる.

3. 2 DICM による試験体表面のひずみ分布

DICM により算出した最大主ひずみの分布を図-3 に 示す. 促進 34 日では, 亀甲状に 1200×10⁻⁶以上のひず み集中領域が試験面全体に発生し, ASR の顕在化を捉 えたと考えられる. 促進 89 日では,前記のひずみ集中 領域がさらに細分化し, ASR 膨張の進行が伺える.ま た,促進 34 日時点は 0.05 mm 程度のひび割れが一部の みに認められたが,促進 89 日時点では前記位置のひび 割れ幅が 0.10 mm 程度に拡大するとともに,ひび割れ 領域も拡大した. なお,本実験の範囲では,促進 34 日 での 0.05 mm 程度のひび割れ部分に 6000~7000×10⁻⁶ 程度の見掛けのひずみが分布した.

3.3 ひずみ分布の定量評価

促進期間 21 日~89 日における最大主ひずみ分布の 度数分布の変化を図-4 に示す.促進期間ごとに度数分 布を確認すると、いずれの期間も 0~400×10⁻⁶ が最も 多く分布する階級であった.さらに、収縮側の階級には ほとんど分布していないことから、試験体の膨張が伺 える.また、2000×10⁻⁶ を超える引張ひずみでは、促進 期間の経過とともに急激な増加が認められ、促進 21 日 に対し促進 89 日は約 12 倍であり、明確な差といえる. そこで、2000~7000×10⁻⁶の度数分布(図-5)を抽出す

ると、ひずみの集中が観察された促進34日以降に6000×10⁶以下の度数が増加した.当該ひずみ領域では目視できるひび割れは未発生であり、ひび割れ発生前にASRの進展を捉えられる可能性が示唆される.なお、ひび割れ上には、見掛けのひずみ値である7000×10⁻⁶以上の度数が促進89日に急激に増加しており、前記した目視可能なひび割れの発生傾向とも符合する.

4. まとめ

急速膨張性を示す反応性骨材を用いて試験体を作製し、膨張挙動をデジタル画像相関法により定量評価し

- た. その結果,得られた知見を以下に示す.
- DICM とコンタクトゲージ法による平均ひずみ値 はほぼ一致した.一方,ひび割れが進展した場合に DICM による計測値は乖離を示した.
- (2) 最大主ひずみ分布の変化から,促進34日以降に引 張ひずみが亀甲状に集中する傾向を確認した.
- (3) DICM により算出した最大主ひずみの度数分布に 基づき,目視可能なひび割れ発生前に ASR の膨張 挙動の進展を定量的に示した.

参考文献

 第田ほか:ラインセンサタイプ全視野ひずみ計測装置を用いたコンクリート断面内の乾燥収縮ひずみ評価,土木学会年次学術講演会講演概要集,Vol.70, pp.153-154,2015