T形柱梁接合部における RC 柱部材の変形性能に関する実験的検討

敏弥	田所	裕喜	中田	浩之	○草野	正会員	鉄道総合技術研究所	(公財)
脩平	西村	淳志	幸良					
知紀	安保	下会員	会社 -	没株式≤	鉄建建調			

1. はじめに

鉄道 RC ラーメン高架橋の柱梁接合部は,鉄道構造物等設計標準・同解説(コンクリート構造物)(以下, 鉄道標準)¹⁾等に示される配筋の仕様に従うことで,具体的な照査は省略されている.しかし,鉄筋の高強度 化等に伴う断面の縮小に起因して,接合部が相対的な弱点箇所となる可能性があり,接合部の諸元に応じて照 査できる体系の構築が望まれる.そこで,本研究では,柱梁接合部の照査体系の構築に向けて,T形柱梁接合 部を対象に正負交番載荷試験を実施し,接合部の損傷と柱部材の変形性能の関係について検討した.

2. 実験の概要

図1に供試体および載荷装置の概要図を,表1に材料試験結果を示す.供試体は,鉄道 RC ラーメン高架橋の縦梁と柱における T 形接合部の約 50%の縮尺とした.水平部材は縦梁を,鉛直部材は柱を想定している.

軸方向鉄筋には、鉄道標準の適用範囲を超える SD490 を用 い、半円形フック(曲げ内半径 3 ϕ 、 ϕ は軸方向鉄筋径)を用 いて定着した.帯鉄筋は SD345 を用い、溶接閉鎖型とした. 部材基部から載荷点または支点までの距離(せん断スパン*a*) はいずれの部材も 1800mm とし、水平部材はピン構造により 支持した.なお、鉛直部材の*a*と有効高さ*d*の比*a*/*d*は 4.0 である.正、負載荷ともに、鉛直部材のひずみが降伏ひずみ の 1/2 程度に達した時点で1回繰返し載荷を行い、その後は δ_y , $2\delta_y$, $3\delta_y \cdots n\delta_y$ (*n* は整数) と δ_y の整数倍で各サイクル 3 回繰返し載荷を行った. δ_y は正、負載荷ともに鉛直部材が降 伏した時の載荷点位置の水平変位 20mm とした.なお、鉛直 部材には軸力を作用させていない.水平部材には不動梁を設 置し、鉛直部材の相対変位も計測した.

3. 実験結果

(1) 破壊性状:図2に, $-2\delta_{s}$ 載荷終了時の接合部の損傷状況を示す. $\pm 1\delta_{s}$ に達するまでに,水平部材および鉛直部材に 曲げひび割れが発生した.また,正載荷時は 168kN,負載荷時は 173kN の時に,図2 に示すひび割れ①が,正載荷時は 232kN の時にひび割れ②が発生した. $\pm 1\delta_{s}$ で鉛直部材基部において軸方向鉄筋が降伏し, $\pm 2\delta_{s}$ 時は 鉛直部材の曲げひび割れや接合部内の斜めひび割れが進展 するとともに,鉛直部材の半円形フック周辺から図2に示す ひび割れ③が発生した. $\pm 3\delta_{s}$ の載荷で,鉛直部材基部の圧縮 縁でコンクリートが圧壊し, $4\delta_{s}$ の載荷でかぶりがはく落し, 軸方向鉄筋の座屈を確認した. さらに載荷を続けると,水平

キーワード RC ラーメン高架橋,T 形柱梁接合部,変形性能 連絡先 〒185-8540 東京都国分寺市光町 2-8-38 (公財)鉄道総合技術研究所 TEL:042-573-7281

表1 材料試験結果

(a)	鉄筋	(b) コン	クリート	
	軸方向鉄筋 SD490	帯鉄筋 SD345		コンクリート
呼び名	D19	D10	压縮強度 (N/mm ²)	33.3
降伏強度 (N/mm ²)	526	378	引張強度 (N/mm ²)	3.18
弾性係数 (kN/mm)	187	181	ヤング係数 (kN/mm)	27.0

荷重が低下したため、6&の1ループの載荷で実験を終了した.なお、実験終了時まで、水平部材には曲げひび割れが発生した程度であり、軸方向鉄筋は降伏しなかった.

(2) 水平荷重と水平変位の関係:図3に,水平荷重と水平変位の 関係を示す.図には,水平部材の変形分も含む載荷点の絶対水平 変位と,水平部材から治具を介して計測した相対水平変位(図1 参照)を示したが,本実験では両者に顕著な違いはみられなかっ た.かぶりがはく落した 4 δ_y において,繰返し載荷により水平荷 重が低下した.なお,軸方向鉄筋の座屈にともなって繰返し載荷 により荷重低下が顕著とならない最大変位(M点変位¹⁾)は,正 負ともに 3 δ_y と考えられる.また,水平荷重と水平変位の関係の 形状は紡錘型となった.図4に等価粘性減衰定数 h_{eq} を示す.高強 度の軸方向鉄筋を用いると、フーチングからの伸出しの割合が大 きくなるために, h_{eq} は小さくなる傾向にあるが²⁾,本実験におい ては,最大水平荷重時(4 δ_y)の h_{eq} は 20%~25%程度であり,普 通強度(SD345 程度)の軸方向鉄筋を用いた場合と同等であった.

(3) 鉄筋ひずみ: 図5 に鉛直部材の軸方向鉄筋のひずみ分布を示 す. なお,ひずみは鉄筋の両面で計測したひずみの平均である軸 ひずみである.鉛直部材は,基部が先行して降伏し,最大荷重時 の降伏範囲は0.9*d*であった.なお,接合部内に配置した帯鉄筋は 載荷終了まで降伏ひずみに達しなかった.

(4) 変形性能の計算値との比較: 図6に,鉛直部材の軸方向鉄 筋の伸出しによる回転角の実験値と計算値との比較を示す.伸出 しによる回転角は接合部内の軸方向鉄筋のひずみを積分して伸出 し量を算定し,引張鉄筋と圧縮鉄筋の距離で除することで算定し た.Y点(1 δ_y),M点における軸方向鉄筋の伸出しによる回転角 θ_{y1} , θ_{m1} の計算値は,いずれも実験結果を概ね算定できる結果と なった.また,軸方向鉄筋が普通強度の実験結果から導出された 文献 ¹)にもとづく,塑性ヒンジ部の曲げ変形による載荷点位置の 相対水平変位の計算値 $\delta_{mp,calc}$ は45.2mmであるのに対し,実験値 $\delta_{mp,exp}$ は正載荷で40.6mm,負載荷で41.9mmであり,計算値は実 験値を概ね妥当に算定できている.図3に,文献¹⁾に示される変 形性能の計算値を併記した.曲げ耐力やM点における水平変位を 精度よく評価する結果となった.

4. おわりに

本実験においては、SD390 までが適用範囲である鉄道標準の配 筋仕様で、軸方向鉄筋に SD490 を用いた場合でも、接合部に斜め

参考文献

1)(財)鉄道総合技術研究所:鉄道構造物等設計標準・同解説 コンクリート構造物, 2004.

2) 岡本大:高強度材料を用いた鉄道コンクリート構造の性能照査法,東京大学博士論文, 2012.

