トンネル路盤下の地山評価

東日本旅客鉄迫株式会社 止会員 ○小瀬	暑巳
東日本旅客鉄道株式会社 正会員 水野;	七一朗
東日本旅客鉄道株式会社 正会員 山村	啓一
東日本旅客鉄道株式会社 正会員 藤田	健史

1. 調査の背景と目的

トンネル内の路盤は地山によって支持されていて,路盤下の地山の評価を行い,路盤変状につながる条件等 を予め把握しておくことが維持管理上,重要である.そのため,今回トンネル路盤下の地山評価を実施すべく 調査を行い,その試験結果を報告する.なお,調査の対象としたトンネルは,矢板工法で建設されたトンネル で,路盤構造が図-1に示すように路盤コンクリートとりょう盤コンクリートで構成される区間である.

2. 原位置調査

1. の条件を満たす区間を対象にりょう盤コンクリート下の地山 性状を確認するため、A トンネルで5箇所、B トンネルで6箇所の ボーリング調査を実施した. 表-1 にその結果を示す. なお、表中 で採取深さが同一となっていないのは、りょう盤コンクリート厚が 箇所ごとに異なることや供試体作成の条件等による.

(1) 地質·岩石区分

コア観察の結果,Aトンネルについては、主に凝灰角礫岩、火山 りょう盤コンクリート 礫凝灰岩、砂質凝灰岩によって構成されていた.Bトンネルについ 図-1

ては、火山礫凝灰岩、凝灰角礫岩、砂質凝灰岩、凝灰質砂岩、軽石質凝灰岩によって構成されていた.いずれのトンネルでもりょう盤コンクリート下の地山は土砂状、細片化するもの、風化軟岩状(指圧できる)になるものであった.
表-1 原位置調査と室内試験結果

	岩石	地下水位 ^注 りょう盤 ^{注2}	採取 深さ	一軸圧縮 強度	湿潤 密度	土被り	地 山 強度比	土粒子の 比重	細粒分	60% 粒径	50% 粒径	10% 粒径	均等 係数	地盤材料	粒径1mm 以下	浸 水
	Б Л	(m)	(m)	(kN/m^2)	(kN/m^3)	(m)	GN	(g/cm^3)	(%)	(mm)	(mm)	(mm)	Uc	の分類	(%)	用权反
A H S	Aトンネル															
測点1	砂質 凝灰岩	-0.48m (-0.55m)	1. 15	2, 160	16.7	47	2.8	2. 5	29. 7	0.4	0.3	0. 004	95	細粒分質砂	74	В
測点2	砂質 凝灰岩	-1.00m (-1.00m)	1. 23	2, 160	14. 4	47	3. 2	2. 5	28. 3	0.5	0.3	0. 02	33	礫混り 細粒分質砂	74	D
測点3	砂質 凝灰岩	-0.70m (-1.00m)	1. 10	80	16.9	49	0.1	2. 6	33. 5	0. 4	0. 2	0. 01	48	礫混り 細粒分質砂	83	D
測点4	火山礫 凝灰岩	-0.47m (-0.47m)	0. 58	1, 430	20. 0	32	2. 2	2. 7	19. 2	2.6	1.2	0. 01	186	細粒分質 砂質礫	40	D
測点5	凝灰 角礫岩	-0.49m (-1.00m)	1. 09	2, 520	21.3	32	3.7	2. 8	13. 8	4. 8	2.0	0. 02	218	細粒分混り 砂質礫	42	В
B h :	Bトンネル															
測点1	凝灰質 砂岩	-0.46m (-0.44m)	0. 58	1, 350	18.0	19	4.0	2. 6	13. 4	0. 2	0. 2	0.03	8	細粒分混り 砂	91	C
測点2	軽石質 凝灰岩	-0.46m (-0.38m)	1. 08	1,000	16.0	19	3.3	2. 5	25. 7	0. 2	0. 2	0. 01	23	礫混り 細粒分質砂	83	D
測点3	砂質 凝灰岩	-0.51m (-0.56m)	0. 73	2, 150	15.9	14	9.7	2. 5	39. 3	0. 2	0. 1	0.01	13	細粒分混り 砂	96	A
測点4	凝灰質 砂岩	-0.53m (-0.40m)	0. 65	1, 110	19.4	61	0.9	2. 7	8. 9	0. 3	0.3	0. 1	4	細粒分混り 砂	92	D
測点5	凝灰質 砂岩	-0. 41m (-0. 48m)	0. 56	790	19. 2	61	0.7	2. 7	8.6	0.5	0.4	0. 1	5	細粒分混り 砂	86	C
測点6	凝灰質 砂岩	-0. 46m (-0. 44m)	0. 55	450	18.6	55	0.4	2.6	6.4	0.4	0.3	0. 1	3	細粒分混り 砂	90	D
: 1	抽下水位	けいない	につぼう	さたます												

注2 ()内は路盤面からりょう盤下端の深さを示す.

キーワード 山岳トンネル,地山評価,地下水位,力学特性,浸水崩壊度

連絡先 〒163-0231 東京都新宿区西新宿二丁目6番1号 新宿住友ビル31階 東日本旅客鉄道(株)構造技術センター 電話:03-6276-1251

図-1 対象トンネルイメージ

(2) 地下水位

ボーリングコア採取後,地下水位を確認した.2019年2月に 調査を実施し, **表**-1の通りAトンネルでは路盤コンクリート表 面から-0.47m~-1.00m で,Bトンネルでは路盤コンクリート表 面から-0.41m~-0.53m であった.また,地下水位とりょう盤コ ンクリートの高さ関係の概略を図-2に示す.これよりりょう盤 コンクリート下端を基準高さとすると,地下水位の位置はAト ンネルでは0~+0.51m,Bトンネルでは-0.13m~+0.07mの間 に位置していた.

クリートの位置関係

4. 室内試験

ボーリング調査で採取したコアを用いて岩石の一軸圧縮強度や密度,浸水崩壊度など室内試験を実施した. 表-1にその結果を併せて示す.

(1) 力学特性

りょう盤コンクリート下端付近のコアを用いて一軸圧縮強度試験を行った.その結果,Aトンネルにおいて 一軸圧縮強度 σ c は 80kN/m²~2,520kN/m² であり,Bトンネルにおいて一軸圧縮強度 σ c は 450kN/m²~2,150kN/m² であった.地質・岩石区分結果と併せて今回の調査対象箇所のボーリングコアは,参考文献 1)の判定(軟岩: 2,000kN/m²~15,000kN/m²,土砂:2,000kN/m²以下)によると,いずれも低固結~未固結な堆積軟岩あるいは堆 積物との判定となった.

また,地山強度比 G_Nについては A トンネル, B トンネル併せて 4 測点で地山強度比 G_N<1.5 となった.

(2) 粒度組成

いずれのトンネルも均等係数 Uc は A トンネルで 33~218, B トンネルで 3~23 と粒度分布にばらつきがある 一方で、粒径 1mm 以下の粒子が A トンネルで 62%, B トンネルで 90%を占めていた.また、B トンネルの測点 4~測点 6 において Uc ≦5 という結果となった.

(3)浸水崩壊度

浸水崩壊度については、A トンネルにおいて5箇所中3箇所でD ランク、B トンネルにおいて6箇所中3箇 所でD ランクという結果となった.

5. まとめと今後の調査方針

今回,トンネル路盤下の地山評価を実施すべく調査を行い,その試験結果として一軸圧縮強度が2,520kN/m² 以下の低固結~未固結な軟岩が堆積していることや湿潤密度が小さいこと,1mm以下の粒子が多いことが分か った.そして,地下水位が高い位置にある(Aトンネルはりょう盤コンクリート中に位置し,Bトンネルはり ょう盤コンクリート下端付近に位置する)という特徴があった.

路盤下の地山の固結度が低かった理由として,高い地下水位以外には,列車の繰り返し荷重が作用したこと やりょう盤コンクリートの厚さ,トンネル新設時の掘削状況も影響を受けている可能性もある.今後,複数の トンネルで上記の原位置試験や室内試験を実施するとともに,豊水期・渇水期も含めた地下水位観測で水位の 経時変化を確認するほか,列車通過時の過剰間隙水圧の計測も行い,要因分析の深度化を図りたい.

参考文献

1) 土木学会 トンネル標準示方書 山岳工法偏・同解説 2016年7月