全方向ディスクトランスデューサーを搭載した立方体土槽の開発

東京大学生 東京大学生 東京大学生 東京大学生

產技術研究所	学生会員	〇川口	勇一郎
產技術研究所	正会員	大坪	正英
產技術研究所	学生会員	Troy	ee Tanu Dutta
產技術研究所	フェロー会員	桑野	玲子

1. はじめに

鉛直方向と水平方向の地盤剛性が異なることは経 験的に知られているが印、精確な測定が困難であるた め、その異方性のメカニズム解明には至っていない。 本研究では地盤剛性の固有異方性を精度良く評価す るための試験装置開発を目的として、3 主軸方向にデ ィスクトランスデューサー[2]を搭載した立方体土槽 を製作した。本報では試験装置の概略および弾性波 計測結果について発表する。

2. 試験装置

縦・横幅 30mm、厚さ 3mm の矩形型圧電素子を用 いて図1に示すディスクトランスデューサー(DT)を 製作した(外寸: 49×49×12mm、図 1)。S 波用と P 波用圧電素子の2枚を組み合わせ、一辺100mmの立 方体アクリル土槽内の6面すべてに取付けた(図2)。 図3に示すように、3主軸方向の圧縮波(P)波成分(Pxx、 Pyy、Pzz)に加え、3 方向のせん断波(S)波成分(Sxz、 Syx、Szy)の計6種類の弾性波計測を可能とした(図 3)。また、DTは脱着可能であり、必要に応じて異な る方向の弾性波計測が可能である。

3. 試験材料·方法

気乾状態の豊浦標準砂および同等の粒度を有する ガラスビーズ材料を用いて模型地盤を作製した。地 盤を10層に分割し、各層において乾燥状態の材料を 突き固めた。ガラスビーズ地盤の間隙比は0.552、豊 浦砂地盤は0.626 であった。圧電素子表面と地盤材料 の接触を良くするために約2kPaの上載圧を加えた。

片側の DT から周波数 7kHz、両側振幅 140V の正 弦波パルスを発生させ、同軸方向の反対側に位置す る DT で弾性波を受信した。入力波と受信波のピー ク時刻の時間遅れを伝播時間とし、伝播距離から除 すことで弾性波速度を算出した。

図1 ディスクトランスデューサーと AA'断面模式図

図2 DT を設置した立方体土槽

計測した6種類の弾性波の伝播・振動方向 図 3

キーワード 弾性波伝播速度,模型実験,ディスクトランスデューサー,固有異方性,粒子形状,動的計測 〒153-8505 東京都目黒区駒場 4-6-1 東京大学生産技術研究所 TEL 03-5452-6843 連絡先

III-301

4. ガラスビーズ地盤

ガラスビーズ地盤における3 主軸方向のP 波の計 測結果を図4 に示す。鉛直方向のPzz 成分が最も速 く伝播し、続いて Pyy、Pxxの順となった。P 波伝播 速度は伝播方向の応力と強い相関があり^[3]、本実験の ような1次元圧縮状態では鉛直方向の応力が大きい ことと整合する。ただし、水平方向の土圧は計測し ておらず3 方向のP 波速度の定量的な差異について は十分な説明はできない。

一方、同材料のS波伝播実験の結果、S_{XZ}とS_{ZY}の 伝播速度はほぼ一致した(図5)。既往の研究によると、 S波速度は伝播方向と振動方向の2方向応力の幾何 平均との相関があることが知られており^[3]、S_{XY}と S_{ZY}の速度の一致が説明できる。また、S_{YX}の伝播速 度は水平方向応力のみに依存するため、S_{XZ}とS_{ZY}に 比べて小さな速度が観測されたと考えられる。

5. 豊浦砂地盤

豊浦砂に対する P 波計測において大きなノイズが 発生し、P 波到着時刻の同定が困難であったため、 ここでは S 波の計測結果のみ図 6 に示す。ガラスビ ーズ地盤と対照的に Syx の速度が最大となった。こ れにより、豊浦砂のような自然地盤材料については、 堆積面に対して伝播・振動する S 波速度が大きいこ とが示され、地盤剛性の固有異方性が確認された。

6. 考察

ガラスビーズ材と豊浦砂の実験結果を比較すると、 全方向において、豊浦砂地盤を伝播する S 波の方が 速いことがわかる。豊浦砂の方が緩詰めにもかかわ らず速度が大きい理由としては、粒子の剛性率が大 きい可能性、粒子間の接触点数が多いことが挙げら れるが、粒子の形状の影響も大きいと考えられる。 先行研究によると、粒子の堆積方向に伝播する弾性 波速度の方が多いと報告されており^[3]、豊浦砂の長手 方向の空間的分布との相関があると考えられる。

7. 結論

新たに製作した立方体土槽の全方向にディスクト ランスデューサーを設置し、弾性波速度の異方性に ついて検討した。弾性波の伝播方向および振動方向 の幾何平均応力に対し、真球度の高いガラスビーズ 材を用いた場合の速度は比較的等方であるのに対し、 豊浦砂の場合は水平方向に伝播・振動するせん断波 速度は相対的に大きくなることが明らかとなった。

参考文献

 Clayton, C.R.I. (2011) Stiffness at small strain: research and practice. *Géotechnique*, 61(1), 5–37. [2] Suwal, L.P. & Kuwano, R. (2013) Disk shaped piezo-ceramic transducer for P and S wave measurement in a laboratory soil specimen. *Soils and Foundations*, 53(4), 510–524. [3] Santamarina, J.C. & Cascante, G. (1996). Stress anisotropy and wave propagation: a micromechanical view. *Can. Geotech. Journal* 33(5), 770–782.