ベレア砂岩を対象とした空隙スケールでの水ー空気多相流解析の試み

大成建設株式会社 正会員 〇増岡 健太郎,山本 肇

1. はじめに

近年,石油工学系の分野を中心に,貯留層内部における石油の挙動をミクロンスケールの流体解析で調査す る技術が発達している。具体的にはX線CTで石油貯留層の空隙構造を抽出し,その構造形態を直接的にモデ ル化して流体解析を行う(空隙スケール解析)。著者らは,空隙スケール解析技術を導入することで,室内試 験(透水試験・トレーサー試験・多相流試験など)を補完(メカニズム理解,他条件での検討など)する技術 開発を進めている。本稿では,ベレア砂岩の空隙部と基質部の二値化データ(解像度約5µm)を用いて空隙構 造をモデル化し,ナビエ・ストークス方程式を解く流体解析を行った結果を報告する。

2. 空隙スケールでの多相流(水-空気)解析

本研究では,構造格子系の熱流体シミュレーション コード (STREAM [Cradle 社])を用いて解析を実施し た。計算では,下記の(1)連続の式と(2)ナビエ・ストー クス方程式 (非圧縮性流体)を数値的に解く。

 $\frac{\partial u_j}{\partial x_j} = 0 \qquad (1) \qquad (i, j = 1, 2, 3)$ $\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_i} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + v \frac{\partial^2 u_i}{\partial x_i^2} + \frac{1}{\rho} f_i \qquad (2)$

ここで、xはデカルト座標,uは流速、tは時間、pは圧 カ、ρは密度、uは動粘性係数、fは外力である。本計算で扱う 扱う流体は水と空気の二つの流体で、流れは層流、密度と温度 (20℃)は一定条件で計算した。

ベレア砂岩の空隙と基質が解像度 5.549µm で二値化された ボクセルデータ(Imperial College London から公開)を利用し てベレア砂岩の空隙部を抽出した。図 1 に本解析モデルの概

図1 解析モデル概要

表1 主な解析条件

項目	条件
流体	水-空気 (非圧縮性,20℃)
流れ	層流
自由表面解析	MARS 法
壁面境界	ノースリップ

要を示す。図中の緑色で示した X×Y×Z = 555µm×355µm×255µm の領域は岩石部で、本領域にベレア岩石の空 隙部(空隙率 0.18)が計算格子として与えられる。岩石部の上方の灰色部は非モデル化部分で計算格子は存在 しない。岩石部の両端(図中 X 軸方向)には空間を設け、流入境界(紫色)または圧力固定境界(茶色)を設 定した。流入境界には、ケース1では空気 0.03mL/min、ケース2では空気 0.003mL/min を与えた。圧力固定 境界および初期圧力には大気圧(101,300Pa)を与え、圧力固定境界から流入する流体は空気のみとした。壁境 界はノースリップ境界、流体と壁面の接触角は 90 度とした。初期条件として、岩石部(空隙部)は水、その ほかの部分は空気で飽和されている条件とした。最小格子幅は 2µm で、モデル全体の総格子数は 2,014,031 で ある。主な解析条件の一覧を表 1 に示す。

3. 結果と考察

図2と図3にケース1解析結果,図4にケース2解析結果を示す。図は流体が流れる部分(計算格子)を半 透明のグレーで表示させている。空隙部の特徴として,大きく二つの経路によって上流側と下流側の空間が繋 がっており,途中で二つの流路が接続する構造をしている。図中青色は水で満たされた空隙のレンダリング画

キーワード X線CT,ベレア砂岩,空隙スケールモデリング,多相流解析,地下水解析

連絡先 〒245-0051 神奈川県横浜市戸塚区名瀬町344-1 大成建設㈱ 技術センター TEL045-814-7217

像(解像度は粗くしている),水色は水と空気の相境 界,マゼンタ色は流線を示す。

各図とも,空気の流入とともにデッドエンドポア などに水が残留していく様子が計算で再現されてい る。さらに、図2と図3の流線を比較すると、計算 初期(図2)にY軸プラス側の空隙に向かっていた 空気相の流線が、その後(図3)Y軸マイナス側の 流路にシフトしている。この理由として、局所的に 狭隘な空隙部が存在するような場合、流体界面が狭 隘部を通過する場合に高い圧力勾配が必要になるた め,流動し易い方へ流動部分がシフトしたと思われ る。

空気流入速度が1オーダー小さい場合(ケース2) であっても、ケース1と同様に空隙中に水が残留さ れる様子が計算された(図4)。図3と図4の黄色破 線で示した範囲を拡大した結果を図5に示す。残留 する水の分布をケース1と2で比較すると、図中に 赤色破線で示す部分では、ケース1では水が残留す るが、ケース2では残留しない様子が見られた。す なわち, 流入速度の違いによって, 残留する水の分 布が異なる様子が計算で再現された。

4. まとめ

本研究では、解像度 5µm のベレア砂岩の空隙部と 基質部の二値化ボクセルデータを用いてミクロンス ケールで空隙構造をモデル化し、ナビエ・ストーク ス方程式を解く流体解析を実施した。解析結果より, デッドエンドポアに水が残留する様子, 流入した空 気が選択的に流路を形成する様子,流入空気の速度 の違いによる残留水の分布の変化などを表現できる ことを確認した。

今回は試験的に行った計算であるため, 接触角な どのパラメータは仮定値である。今後の課題として,

流体や岩石を変えて X線 CT を用いた 多相流実験とその再現解析を行うこと で,入力パラメータや境界条件の検討 を行い,計算結果の信頼性を向上させ ていく予定である。

謝辞 本研究の一部は(独)日本学術振 興会の科学研究費助成事業(課題番号 17H01291)による助成を受けたもので ある。感謝の意をここに表する。

図4 ケース2解析結果(流入量:小,0.05878秒)

(a)ケース1 (b)ケース 2 結果拡大(図3,4の黄色破線付近をY軸正側から) $\boxtimes 5$