立坑に接続するシールドトンネルの縦断方向耐震検討

(公財) 鉄道総合技術研究所 正会員 ○舩越 宏治 津野 究

藤田 輝一 木下 果穂

中央復建コンサルタンツ(株) 正会員 室谷 耕輔 坂田 智基

1. はじめに

シールドトンネルと立坑との接続部は、縦断方向に剛性が極端に変化することや、立坑の挙動の影響を受けることから、地震の影響を受けやすいと考えられる。そこで、立坑に接続する単線シールドトンネルを対象にトンネル縦断方向の地震時の検討を行った。

2. 検討概要

(1) 検討対象

検討ケースは図1に示すとおり設定した. 単線シールドトンネル (トンネル外径 D=6.6m, セグメント高さ h=30cm) を検討対象とし, トンネルが砂質土 (Vs=230m/s) に位置するものとした. シールドトンネルの土被りは15mとし,地表面から立坑底面までの深さが25m, また,地表面から基盤層(Vs=400m/s) までの深さを30mとした.

(2) 構造解析モデル

構造解析モデルは、図2に示すような「縦断方向 はり-ばねモデル」を用いた. このモデルでは、セ グメントリングをはりとし, リング継手面を軸方向 ばね,回転ばねおよびせん断ばねでモデル化した. また, 立坑をはりとし, 立坑接続部については, 軸 方向ばね,回転ばねおよびせん断ばねでモデル化し た. ここで、立坑接続部のモデル化については、図 3 に示すようにセグメントと坑口コンクリートを長 ボルトで結合する構造を考えた. セグメント側(図 中の⑦)のばねと立坑側(図中の⑦)のばねを直列 ばねとして足し合わせた合成ばねとしてモデル化 した.表1に立坑接続部の合成ばねの組合せを示す. セグメント側は、リング継手を考慮した非線形のば ねとし, 立坑側について, 合成ばね A は, 剛結とし, 合成ばねでBは、アンカー定着部のコーン破壊を考 慮した非線形のばねでモデル化した. 図4に合成ば ねBの考えで算出した立坑接続部の回転特性を示す.

キーワード シールドトンネル, 耐震設計, 縦断方向 連絡先 〒185-8540 東京都国分寺市光町 2-8-38

図1 検討ケース

図2 縦断方向はり一ばねモデル

図3 立坑接続部の例

表1 立坑接続部の合成ばねの組合せ

検討ケース	セグメント側:⑦	立坑側: ⑦	
ばねA	リング継手相当の	剛結	
	ばね特性		
ばねB	リング継手相当の	アンカー筋相当の	
	ばね特性	ばね特性	

(公財) 鉄道総合技術研究所 TEL042-573-7266

(3) 解析手法

一次元地盤応答解析で得られた時刻歴変位を、地盤 ばねを介して「縦断方向はりーばねモデル」に入力し た. 地盤応答解析については、GHE-S モデルを用い た逐次解析法により時刻歴応答解析を行った. 設計地 震動は、L2 地震動スペクトルII を用いたII).

3. 検討結果

構造解析より得られた立坑およびセグメント本体の 鉛直曲げモーメントを図 5 に示す. 立坑接続部に着目 すると, 鉛直曲げモーメントは, 合成ばね A では, 9322kN・m, 合成ばね B では 5458kN・m となっており, 立坑側のばねをアンカー筋相当でモデル化した合成ば ね B の方が小さい結果となった.

同様に、立坑およびセグメント本体の水平曲げモーメントを図 6 に示す、立坑接続部に着目すると、水平曲げモーメントは、合成ばね A では、5074kN・m、合成ばね B では 4826kN・m となり、立坑接続部のばね特性(図 4)の設定による差はみられなかった。

つぎに、トンネル標準示方書 ²⁾を参考に限界状態設計法の考え方で、立坑接続部の照査を行った例を表 2 に示す. この結果、立坑側のばねをアンカー筋相当でモデル化した合成ばね B を用いた場合では、すべての項目にておいて、照査を満足する結果となった.

4. まとめ

立坑に接続部するシールドトンネルを対象に縦断方 向の耐震検討を行った.今後は,地盤条件や立坑接続 部の構造を変え,傾向を把握することを考えている.

参考文献

- 1) 国土交通省監修 鉄道総合技術研究所編:鉄道構造物等設計標準・同解説(耐震設計), pp. 47, 2012.
- 2) 土木学会: トンネル標準示方書[シールド工法編], 限界状態設計法編, pp. 340, 2016.

	検討ケース		合成ばねA	合成ばねB
	合成ばねの組合せ		セグメント側ーリング継手	セグ・メント側ーリング継手
			立坑側-剛結	立坑側ーアンカー筋
立坑接続部	軸引張力 Ntmax	(kN)	1,477	1,397
	引張耐力 Ntu	(kN)	7,501	7,501
	γ i•Ntmax/Ntu	_	0.20	0.19
	鉛直曲げモーメント Mvmax	$(kN \cdot m)$	9,322	5,458
	曲げ耐力 Mud	(kN·m)	8,579	8,579
	γ i•Mvmax/Mud	_	1.09	0.64
	水平曲げモーメント Mhmax	$(kN \cdot m)$	5,074	4,826
	曲げ耐力 Mud	(kN·m)	8,579	8,579
	γ i•Mhmax/Mud	_	0.59	0.56
	鉛直せん断力 Svmax	(kN)	4,220	3,812
	せん断耐力 Su	(kN)	4,812	4,812
	γ i•Svmax/Su	_	0.88	0.79
	水平せん断力 Shmax	(kN)	2,746	2,769
	せん断耐力 Su	(kN)	4,812	4,812
	wi.Shmay/Su		0.57	0.58

表 2 立坑接続部の照査結果の例

図4 立坑接続部の回転特性(合成ばねB)

(a) 合成ばねA(立坑側:剛結)

(b) 合成ばね B (立坑側:アンカー筋) 図 5 鉛直曲げモーメント

(a) 合成ばね A(立坑側:剛結)

(b) 合成ばね B (立坑側:アンカー筋) 図 6 水平曲げモーメント