粗配置の桟粗度流れで生じる大規模定在波の乱流特性

神戸大学大学院工学研究科	学生会員	〇八木	潤平
神戸大学大学院工学研究科	正会員	藤田	一郎
神戸大学大学院工学研究科	学生会員	谷县	昂二郎
神戸大学大学院工学研究科	学生会員	東川	真也

1. はじめに

洪水流には大規模な水面変形を伴う場合がある.そ の一つに,極めて急峻な三角形状の大規模な定在波で ある三角波(Fig.1)がある.局所的に水面が大きく上昇 するため,底面せん断応力や掃流力が急激に増加する ことが予想されるため,河床変動へ大きく寄与する可 能性が考えられるが,その内部構造に関する知見はほ とんど得られていない.以上を背景とし,本研究では 大規模定在波を伴う流れの内部流況について,その詳 細把握を目的とした室内実験を実施した.流れ場およ び水面形状をレーザー光膜により可視化・計測し,特 に乱流諸量に着目して考察を行った.

2. 実験概要

水路全長約 4m, 水路幅 10cm の循環型直線水路を 用いた.底面には一辺が 0.9cm の角柱型桟粗度を粗度 高さkの 30 倍の間隔で設置した.レーザー光膜およ び直径約 80 µ m のナイロン製粒子により水路中央の 縦断面を可視化し(Fig. 2),オプティカルフロー法の一 種である DeepFlow²⁾により流れを計測した.撮影は高 速度カメラを用い 400Hz で 60 秒間行った.東川ら³⁾ の 90cm 幅の水路で三角波が発生した水理条件を 10cm 幅の水路で適用し,三角波に類似した大規模な 定在波を発生させた.この水理条件をケース B-1 と して,勾配を変化させ,3ケースの実験を行った.各 ケースの水面変形の模式図を Fig. 3 に示す.

Fig. 1 豊平川の昭和 56 年 8 月洪水での三角波¹⁾

Fig. 3 Schematic illustration of the flow

case	Ι	$Q [\rm cm^3/s]$	H _{mean} [cm]	H _{max} [cm]	H _{min} [cm]	$U_m \text{ [cm/s]}$	Fr	Re
A-1	1/50	3883	6.22	7.11	5.55	62.4	0.799	17304
B-1	1/100	3883	7.30	9.00	5.74	53.2	0.629	15785
C-1	1/200	3883	7.93	8.57	7.26	49.0	0.555	15015

Table 1 Experimental condition

キーワード 桟粗度,水面変形,大規模定在波,三角波,オプティカルフロー,乱流計測

連絡先 ifujita@kobe-u.ac.jp

3. 乱流計測結果

Fig. 4 は主流速方向の乱流強度の空間分布である. 相度要素より強い乱れ領域が広がる様子が確認でき る.また,この乱れ領域は水面変形と相似な分布を呈 している. Fig.5 は各ケースの底面付近v/k=0.2 の乱 流強度の分布である. これより, B-1 は水面変形によ り乱流強度が大きい領域が底面付近に近づくため, 最も大きくなっている. A-1 は水面がx/k=15 以降で 低下するため, その位置で底面付近の乱流強度が大 きくなっているが、桟粗度で発生した乱流は減衰す るため, B-1 ほど大きくはなっていない. 一方で変形 の小さい C-1 は乱流が発達するx/k=5 から 10 で大き くなり、その後減衰している一般的な分布となって いる.以上より、水面変形を伴う流れでは底面付近の 乱流強度が大きくなり,底面せん断力が大きくなる ため,その位置で河床が洗堀される可能性がある.次 に Fig. 6 は乱流エネルギーの分布を示している. 桟 粗度下流の分布は B-1 では乱れ領域が狭い範囲に限 られている.これは水面の傾きに伴って内部流が下 方に加速され乱れが抑制されたためと考えられる.

4. おわりに

本研究では大規模定在波の乱流特性を解明した. その結果,水面の変形が内部の乱れ構造に大きく影響することを示した.今後は大規模定在波のケース を増やし,体系的な実験検証を続けると共に,LES数 値シミュレーションとの比較を行う予定である.

参考文献

- 1) https://www.ishikari.or.jp, 2019/3/1 参照.
- P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid: Deepflow: Large displacement optical flow with deep matching, In Computer Vision(ICCV), IEEE International Conference on, pp.1385-1392.IEEE, 2013.
- 東川真也,谷昂二郎,藤田一郎:粗な配置の桟 粗度開水路で生じる水深規模の振幅を有する 水面波の特性,土木学会論文集 B1(水工 学)Vol.74, No.5, I_739-I_744, 2018.

Fig. 5 Comparison of turbulent distribution (y/k=0.2)

Fig. 6 Turbulence kinematic energy distribution