鋳鉄床版モジュール−主桁間接合におけるテーパーつき高力ボルト摩擦接合継手の 力学的挙動および合成効果の検討

大阪市立大学大学院 学生員 〇白井 悠吾 大阪市立大学大学院 正会員 山口 隆司 日之出水道機器 (株) 学生員 飛永 浩伸 阪神高速道路技術センター (一材) 非会員 加藤 祥久 成和リニューアルワークス (株) 正会員 水谷 公昭 佐藤鉄工 (株) 非会員 野原 徳博

1. 背景および目的

軽量かつ耐疲労性に優れた床版として,図-1のよう な球状黒鉛鋳鉄(FCD)を用いた道路橋床版(以下,鋳鉄 床版)が開発されている¹⁾. 鋳鉄床版は製作上の制約も あり,パネル状の鋳鉄床版モジュールと主桁間の接合 部は高力ボルト摩擦接合にて支持部材を介して連結さ れる.しかし,支持部材と連結する鋳鉄床版の接合部 (リブ)には抜き勾配(約1°のテーパー)が存在し,すべ り耐力の低下が懸念される.また,鋳鉄床版は既設合 成桁の更新に採用することも想定しており,鋳鉄床版 -主桁間の合成効果が重要であるが,既往研究^{2),3)}では 鋳鉄床版-主桁間の接合部の合成効果の検討はなされ ていない.

これらより、本研究では、鋳鉄床版-主桁間接合部の 合成効果ならびにすべり挙動の解明を目的に、鋳鉄床 版-主桁間の接合を再現した試験体の水平載荷試験を 実施した.

2. 試験体および計測項目

図-2に試験概要を示す. 試験体は鋳鉄床版モジュー ル側面から水平ジャッキにより載荷する. 表-1 に設計 耐力,図-3に試験体の側面図を示す. 鋳鉄床版と支持 部材間および支持部材と主桁間の接合面処理はブラス ト処理を行った無機ジンク塗装面とした.

支持部材の形状をパラメータとし, 主桁中央など合成桁の床版-主桁間に生じる水平力が小さい場合を想定した分離型, 桁端部など生じる水平力が大きい場合を想定した一体型の2種類を用意した. 図-3(a)に分離型の支持部材, 図-3(b)に一体型の支持部材を用いた試験体の側面図を示す. 載荷装置の載荷能力の制約から, 図-3 中の橙色部のボルトのみ締付けを行い, 白色部はスナッグタイトで締め付けた. 高力ボルトはひずみ管理により, F10T(M22)の標準ボルト軸力を目標に締付

表-1 試験体の設計耐力

支持部材 形状	設 す 不 数 μ	床版 支持部材間 ボルト本数	床版 支持部材間 設計すべり耐力 (kN)	支持部材 主桁間 ボルト本数	支持部材 主桁間 設計すべり耐力 (kN)
分離型	0.4	4	656	8	656
一体型		6	984	10	820

キーワード 鋳鉄床版モジュール,テーパー,高力ボルト摩擦接合継手,すべり挙動,合成効果 連絡先 〒558-8585 大阪市住吉区杉本 3-3-138 大阪市立大学大学院 工学研究科 都市系専攻 橋梁工学分野 TEL&FAX 06-6605-2765 けを行った. 合成効果を明らかにするために水平ジャ ッキの水平変位を測定し,すべり挙動を検討するため, 鋳鉄床版-支持部材間,支持部材-フィラープレート間, フィラープレート-主桁 (H 鋼上フランジ)間にクリッ プ変位計を設置し,載荷軸方向の相対変位を測定した.

3. 試験結果

3.1 荷重-変位関係および合成効果

載荷は表-1 に示す設計すべり荷重を目標に行った. すべり荷重は文献 4)を参考に,図-3 に示す計測位置が 0.2 mmに達した時点での荷重と定義した.各ケースの荷 重-変位関係を図-4 に示す.分離型では 699kN で,床 版-支持部材間ですべりが生じたため載荷を中断した. 一体型は試験機の制約により,すべり荷重の 60%の 600kN で載荷を中断した.なお,一体型ではすべりは 生じていない.

図-4 より本試験で計測した荷重の 1/3 の大きさの荷 重点と原点を結んだ線を初期割線の傾きとした.初期 割線の傾きを本試験で得られた鋳鉄床版モジュール-主桁間のずれ定数とした.本試験で得られたずれ定数 および頭付きスタッド(以下スタッド)の押し抜きせん 断試験(d=19^m, H=100^m, 3行1列配置(配置間隔 50 mm))より得られたスタッド1本あたりのずれ定数⁵⁾を 表-3 に示す.分離型はスタッドの 1.5本分,一体型は スタッドの 2.4本分のずれ定数を有していた.

3.2 荷重-相対変位関係

各試験体のすべり荷重を表-2 に示す.また,最も相 対変位が大きかった位置(図-3★印)の荷重-相対変位関 係を図-5 に示す.分離型の場合,鋳鉄床版-支持部材間 と支持部材-主桁間の設計すべり耐力(656kN)は変わら ないが鋳鉄床版-支持部材間の相対変位が大きく増加 し,699kNですべりが生じた.鋳鉄床版のリブ部分は 抜き勾配のテーパーがあり,支持部材-主桁間に比べ相 対変位が増加したと考えらえる.

4. 結論

本研究で得られた結論を以下にまとめる.

1)鋳鉄床版-主桁間の合成効果をずれ定数により比較 した結果,分離型はスタッドの1.5本分,一体型はス タッドの2.4本分のずれ定数を有していた.

2) 鋳鉄床版-主桁間の接合構造を模した試験体に載荷 を行った結果,分離型を用いた場合は設計すべり耐力 以上の耐力を有していることを確認した.

本研究では分離型及び一体型の支持部材を用いた鋳 鉄床版-主桁間の接合構造に対して力学的挙動および 合成効果の検討を行ったが、今後は、鋳鉄床版-主桁間 における高さ調整の簡易化など、更なる支持部材およ び接合構造の合理化が必要と考えられる.

表-2 各ケースのすべり荷重とすべり係数

図-5 分離型の荷重-相対変位関係

<参考文献>

- 例えば,飛泳浩伸,村山稔,佐伯英一郎,玉越隆史,山 口栄輝,三木千壽:球状黒鉛鋳鉄の道路橋床版への適用 に関する基礎的研究,鋼構造論文集,Vol. 24, No. 95, pp.13-24, 2017.
- (税永浩伸,山口栄輝,村山稔:球状黒鉛鋳鉄を用いた道路橋床版の塑性変形性能に関する考察,構造工学論文集,Vol.64A, pp.109-119,2018.3.
- 3) 廣澤直人,山口隆司,飛永浩伸,村山稔:鋳鉄床版モジ ュール接合部に適用した高力ボルト引張接合継手の力 学的挙動に関する解析的検討,構造工学論文集 Vol.65A, 2019.3.
- 日本建築学会:鋼構造接合部設計指針,丸善出版株式会 社,2012.3.
- (Fy (5))
 (Fy (5)