PET 繊維シートで曲げ補強した PFC はりの耐衝撃性

室蘭工業大学大学院	学生会員	○木内	洋介
太平洋セメント(株)	正会員	河野	克哉
太平洋セメント(株)	正会員	安田	瑛紀

1. はじめに

近年,400 MPa 程度の世界最高水準の圧縮強度を有す る無孔性コンクリート (PFC) が開発されている。本研究 では、PET 繊維 (PFRP) シート曲げ補強 PFC はりを対象 に静載荷および衝撃実験を行い、両載荷法による応答変 位を比較検討するとともに、静載荷時の計算結果に基づ く耐衝撃性評価手法の提案を試みた。

2. 実験概要

表1には、試験体の一覧を示している. 試験体名の第1 項目は、コンクリートの種類 (PFC) と鋼繊維混入率 (%) の組み合わせを示している。第2項目は、重錘落下高さ H (mm)を示している。また、静載荷実験の場合にはSとし ている.なお、本試験体に使用した鋼繊維は直径 0.2 mm, 長さ 15 mm, 引張強度 2800 MPa の高強度鋼繊維を用い, 外割で1もしくは2%混入した。図1には、試験体の形 状寸法を示している. 試験体は,形状寸法(幅×高さ× スパン長)が 100 × 25 × 500 mm の繊維補強 PFC に PFRP シートを接着したはりである. PFRP シートは、はり下面 の幅方向に全域、軸方向に中央部から両支点側に 220 mm の範囲に接着した.表2には、実験に用いた PFRP シー トの力学的特性値を示している.表3には、計算耐力の 一覧を示している. なお、PFC と PFRP シートは計算終 局時まで完全付着状態にあるものと仮定した。計算結果 では、いずれの試験体も圧縮破壊で終局に至ることを確 認している.

衝撃載荷実験は,質量 20 kg,先端直径 60 mm の鋼製重 錘を所定の落下高さからスパン中央部に一度だけ自由落 下させる単一載荷法により行った.

3. 実験結果および考察

3.1 静載荷実験結果

図2には、各試験体の荷重-変位関係に関する実験結果 を計算結果と比較して示している.

図より, PFC0-S 試験体は、荷重 5 kN 程度でせん断破 壊に至っており、計算せん断耐力よりも小さい荷重で終 局に至っていることが分かる.これは、はりが大きく変 形し曲げひび割れが多数発生した結果、せん断耐力が低 下したことなどが要因であるものと考えられる.

PFC1/2-S 試験体の場合には、実験結果が計算結果と概

室	蘭工業大学大学院	正会員	栗橋	祐介
室	蒹工業大学大学院	正会員	小室	雅人

表1 試験体の一覧				
試験体名	鋼繊維 混入率 (%)	重錘落下 高さ (mm)		
PFC0/1/2-S	0/1/2	(静載荷)		
PFC0-H150/300/450	0	150, 300, 450		
PFC1-H450/600/750/900	1	450, 600, 750, 900		
PFC2-H450/600/750/900	2	450, 600, 750, 900		

表 2 PFRP シートの力学的特性値(公称値)

繊維 目付量 (g/m ²)	保証 耐力 (kN/m)	厚さ (mm)	引張 強度 (GPa)	弾性 係数 (GPa)	破断 ひずみ (%)
1,250	600	0.906	0.74	11.0	7.0

表3 計算耐力の一覧

試験体の 種類	圧縮強度 (MPa)	曲げ耐力 <i>Pu</i> (kN)	せん断耐力 V _u (kN)	
PFC0	305	6.72	15.7	
PFC1	301	8.50	33.8	
PFC2	292	8.59	52.0	

ね対応している.また,これらの試験体は,はりの上縁 圧縮破壊後,載荷点近傍において斜めひび割れが大きく 進展し終局に至っている.なお,PFRP シートと PFC は りの付着は終局時まで確保されていた.

3.2 衝撃載荷実験結果

図3には,落下高さ*H* = 450 および 900 mm における, 各試験体の重錘衝撃力,支点反力および載荷点変位に関 する時刻歴応答波形を示している.

図より,重錘衝撃力波形は,重錘衝突時に継続時間が極 めて短く振幅の大きい波形が励起した後,継続時間が20 ms 程度で振幅が10kN 程度の主波動が励起する性状を示 している.また,支点反力波形は,継続時間が20 ms 程

キーワード:無孔性コンクリート,鋼繊維, PFRPシート,曲げ補強,耐衝撃性 連絡先:〒050-8585 室蘭工業大学大学院 くらし環境系領域 社会基盤ユニット TEL/FAX 0143-46-5228

度で最大振幅が 20~35 kN の主波動が励起する性状を示 している.

載荷点変位波形は,継続時間が20~30ms程度の正弦 半波が励起しており,その最大振幅は落下高さHの増大 に伴って大きくなっている.

4. 耐衝撃設計法の一提案

図4には、はりの吸収エネルギーと変位量の関係を示している。静載荷時の結果は、前述の荷重-変位関係に基づいて、吸収エネルギー E_a を求め変位量との関係を描いている。衝撃載荷時の結果は、各ケースの入力エネルギー E_k から、下式(1)により PFC はりへの伝達エネルギー E_t を求め、その値が、はりの最大応答変位時の吸収エネル ギー E_a と等価であると仮定して、最大応答変位をプロットした。

$$E_t = \frac{m_2}{m_1 + m_2} \cdot E_k \tag{1}$$

ここに、 m_1 : はりの等価質量、 m_2 : 重錘の質量、 E_k : 入力 エネルギーである。 m_1 は、はりの振動モードが曲げ一次 モードであるものと仮定して、純スパンにおけるはりの 質量を 17/35 倍して求めた。

図より,いずれの実験ケースも衝撃載荷実験による最 大応答変位は静載荷実験の結果と概ね対応していること が分かる.また静載荷に関する計算結果は実験結果を一

図 5 計算最大変位-実測最大変位関係

割程度大きく評価していることから、安全側の評価を与 えていることが分かる.

図5には、静的な計算結果から推定される衝撃作用時の 応答変位とその実験結果との関係を示している。図より、 いずれのケースにおいても計算最大変位は実測値よりも1 ~2程度大きくなっており、安全側の評価を与えているこ とが分かる。

5. **まとめ**

- PFRP シートと PFC はりとの付着は、はりが終局に 至るまで確保されており、PFC の超高強度特性や鋼 繊維の架橋応力が効率的に活用されている。