繊維補強セメント複合材料の動的曲げ特性に関する研究

防衛大学校 学生会員 〇清田 翔吾 岩根 利浩 正会員 別府 万寿博 市野 宏嘉 株式会社クラレ 正会員 小川 敦久

1. 緒言

繊維補強セメント複合材料(FRCC)は、床スラブの剥離片 の落下防止やひび割れ幅低減の目的で使用されている。近 年では、衝撃荷重を受けるコンクリート構造物に対する補 強材料の一つとして FRCC の適用が検討されている.しか し、高ひずみ速度下における FRCC の研究例は少なく、力 学特性については未解明な点が多い. また, 動的実験におけ る慣性力の影響によって大きなばらつきが生じるという問 題も指摘されている.本研究は、3種類のFRCCに対して動 的曲げ実験を行い、曲げ強度および破壊エネルギーのひず み速度効果について検討を行ったものである.

実験の概要

本研究では、新設構造物に適用されることが多いコンクリ ートマトリクスの FRCC を 2 種類, 既設構造物の補修・補強 への適用を目的としたモルタルマトリクスの FRCC を1種 類作製した.写真-1に、使用した繊維の外観および寸法を 示す.ポリプロピレン(PP)繊維は表面に凹凸の加工がなされ ており、コンクリートとの機械的付着が強い.ポリビニルア ルコール(PVA)繊維は親水性が非常に高いため、コンクリー トとの化学的付着が強い¹⁾.これらの繊維を,体積混入率2% でコンクリートおよびモルタルに混入した. これらの FRCC を写真―1 に示すように PPFRC, VFRC および DFRM と称 し、FRCC およびプレーンコンクリート(NC)の計4種類の角 柱試験体(幅 100mm×高さ 100mm×長さ 400mm)を作製し

外観				
種類	ポリプロ ピレン(PP)	ポリビニルアルコール (PVA)		
直径	0.7mm	0.66mm	0.1mm	
長さ	30mm	30mm	12mm	and the
マトリクス	コンク	リート	モルタル	
FRCC 名称	PPFRC	VFRC	DFRM	
写	真-1	繊維の	寺性	写真-2

写真-1 繊維の特性

急速載荷 試験装置

試験法		急速載荷試験				
ひずみ速度		10 ⁻⁶ / s	$10^{-2}/s$	10^{-1} / s		
試	NC	4	4	4		
験	PPFRC	4	4	4		
体	VFRC	4	4	4		
名	DFRM	4	4	4		

た.写真-2に示す急速載荷装置を用いて、静的および動的曲げ実験を行った.図-1に、曲げ実験の概要を示す. 実験ではロードセルを用いて載荷点および支点の荷重を計測し,試験体の側面中央部にL字金具を設置し,変位計 を用いて試験体中央部のたわみを計測した.また,動的曲げ実験では後述するように慣性力の影響が無視できない ため、加速度計を載荷治具上および支点部にそれぞれ2箇所設置して各位置の加速度を計測した.表-1に、実験 ケースを示す. 実験パラメータはひずみ速度を3水準(10⁻⁶, 10⁻², 10⁻¹/s)および試験体の種類(NC, PPFRC, VFRC, DFRM) であり、各4体ずつ実験を行った.

3. 動的曲げ実験における荷重計測と慣性力の補正

図-2に、動的曲げ実験(ひずみ速度 10⁻¹/s)における荷重~時間関係を示す.図-2(a)から、最大荷重と最大支 点反力が 30%程度異なっている.これは、動的曲げ実験では、静止している試験体を短時間内に 2.0m/s まで加速す るため,図-3に示すように載荷点および支点の最大加速度がそれぞれ約 600m/s²および約 100m/s²となり,慣性力 の影響で最大荷重と支点反力に差が生じていることが考えられる。そこで、計測された荷重から慣性力を差し引く

キーワード 繊維補強セメント複合材料,ひずみ速度効果,動的曲げ実験

連絡先 〒239-8686 神奈川県横須賀市走水1-10-20防衛大学校 TEL 046-841-3810 E-mail:em55044@nda.ac.jp

ことで、慣性力の影響を除去した. 図-4 に、ロードセ ルに取り付けた治具の質量(載荷点: 26kg, 支点: 40kg) を加速度に乗じて求めた慣性力~時間関係を示す. 図か ら,載荷点では最大 15kN,支点では最大 3kN の慣性力 が生じている.この慣性力を計測された荷重から差し引 くと、図-2(b)に示すように両者の荷重の値がほぼ一致 し,試験体の上下で荷重と支点反力が釣合っていること がわかる.ただし、図-2からわかるように、荷重と支 点反力の立ち上がりに 1ms 程度の差が生じている. これ は,試験体と支点反力計測用ロードセルの位置がやや離 れているためと考えられる.なお、この時間差によって、 荷重~たわみ関係を求める際に,計測された荷重とたわ みに時間のずれが生じるという問題が生じる.よって, 慣性力の影響を除去した場合に荷重と支点反力が釣合 うこと, また計測される支点反力は荷重よりも遅れて生 じて計測されることを考慮して,荷重から慣性力を差し 引いた値を用いて曲げ応力を求めた.

4. 実験結果および考察

I - 262

写真-3に、実験後の破壊性状を示す.写真から、い ずれの試験体も1本のひび割れが生じていることがわか る. 図-5 に、VFRC の応力~たわみ関係の例を示す. 図から、ひずみ速度が 10% から 10小/s へ増加すると、 曲げ強度が 1.9 倍に増加するが、曲げ強度以降の軟化勾 配は急になり、最大たわみは半分以下となった. 図-6 に、曲げ強度の動的倍率を示す.図から、ひずみ速度10-2/s における曲げ強度の倍率は 1.2~1.6 であるが, ひずみ 速度 10⁻¹/s では 1.8~2.6 へと急増した. なお, 繊維の種 類による差はあまり認められなかった.また図-7に, たわみ5mmにおける破壊エネルギーの動的倍率を示す. PPFRC, VFRC はひずみ速度 10-2/s において動的倍率が 0.8~0.9 に低下するが、ひずみ速度 10⁻¹/s で再び上昇し て動的倍率が 1.1~1.4 となった. 一方で, DFRM はひず み速度の増加に従い動的倍率は増加し、ひずみ速度 10-¹/sにおいて 1.6 を示した.

5. 結言

本研究は、3 種類の FRCC に対し動的曲げ実験を行い、ひずみ速度 10⁻⁶~10⁻¹/s における曲げ力学特性について調べたものである.曲げ実験の結果、繊維の種類によらずひずみ速度 10⁻¹/s で曲げ強度が大きく増加した.破壊エネルギーについては、PPFRC および VFRC の動的倍率はひずみ速度 10⁻²~10⁻¹/s において 1.0 前後であった.DFRM の動的倍率はひずみ速度の増加に従い増加し、ひずみ速度 10⁻¹/s で 1.6 を示した.

参考文献

1) Redon C., Li V., Wu C., Hoshiro, H., Saito, T. and Ogawa A. : Measuring and modifying interface properties of PVA fibres in ECC matrix, Journal of Materials in Civil Engineering, pp.399-406,2001.