深層学習とレーザー超音波可視化試験による欠陥の 自動判定法

1. はじめに

近年,自動車等の機械材料・構造や社会基盤構造物に対 する品質保証や維持管理を目的に,非破壊検査の重要性が 高まっている.しかしながら,将来の検査員の人材不足が懸 念されている¹⁾.一方,ビッグデータ等,IT 技術の発展は目 覚ましく,様々な業界で応用が進んでいる.そこで,本研究 では,人工知能(AI)の非破壊検査への応用を目指す第一段 階として,深層学習を超音波非破壊評価法へと適用し,その 有効性について検討する.深層学習は,画像データの学習に 有効であることを考え,本研究ではレーザー超音波により 可視化させた試験体表面の超音波伝搬映像を深層学習の対 象とする.以下では,まず,レーザー超音波可視化試験につ いて説明する.次に,深層学習について簡単に説明し,鋼材 試験体を対象としたレーザー超音波試験結果に対する深層 学習結果を示すこととする.

2. レーザー超音波可視化試験概要

図 1(a) に示すようなレーザー超音波可視化試験³⁾によ り,図1(b)の鋼材試験片中の欠陥を自動的に検出する方 法を考える. 試験体の寸法は x 方向の幅が 149mm, z 方 向の厚さが 44mm, y 方向の奥行きが 144mm であり, 直 径 *ϕ*=2mm の 2 つの貫通空洞は, *x*, *z* 面にそれぞれ中心, (x, z)=(50mm, 25mm), (100mm, 15mm) を持つとする (x-z 面左下を (x, z)=(0mm, 0mm) とする). ただし, 検出対象とす る欠陥は中心が (x,z)=(50mm, 25mm) のものとした. この 鋼材試験片の x-z 面に、レーザー超音波試験を実施し、x-z 面の超音波伝搬を可視化する.なお、超音波の受信には、中 心周波数 1MHz の縦波探触子を用い, (x, z)=(50mm, 44mm) に設置した.図2に、この時のレーザー超音波可視化試験結 果の一例を示す. 図 2(a) は同様の試験体で欠陥がない場合 の結果を、図2(b)は欠陥がある場合の結果を示してある。図 2(a) より, 欠陥がない場合は, 探触子から放射された入射波 は、同心円状に伝搬していることがわかる.一方、欠陥が存 在する図2(b)に着目すると、試験体中央よりやや上方に位 置する欠陥により、入射波が散乱されている様子を見て取 れる. すなわち, レーザー超音波可視化試験により, 超音波 の伝搬や散乱現象を,検査員が目で見て確認することがで きる.しかしながら,将来のロボット検査等を考えた場合,

○群馬大学理工学部	学生会員	蓑輪里歩
群馬大学理工学部	非会員	波多野雅彦
群馬大学大学院理工学府	正会員	伊藤司
群馬大学大学院理工学府	正会員	斎藤隆泰

図1 レーザー超音波可視化試験(a)試験概要(b)鋼材試験片.

図2 レーザー超音波可視化試験結果の例 (a) 欠陥がない場合 (b) 欠陥が存在する場合.

このような検査員が目で見て確認する作業をロボットに任 せた方が効率が良いと思われる.そこで,以下では,近年,普 及が進んでいる深層学習を用いて欠陥の有無を判定するこ ととする.

3. 深層学習

深層学習とは、複数の中間層を用いたニューラルネット (Neural Network)²⁾ により学習を行う手法である.本研究で は、深層学習の中でも画像認識が得意な畳み込みニューラ ルネット (Convolutional Neural Network)のアルゴリズムを 利用する.ここでは、レーザー超音波可視化試験結果に対し て、欠陥あり、なしの、2つのラベルに分けることを目標とす るため、教師あり学習の分類問題として解く.ただし、CNN については多くの文献を参照できることから、ここではそ の説明は省略する.詳細は文献²⁾ 等を参照されたい.

4. 深層学習を用いた欠陥有無の判定結果

以下,深層学習を用いて欠陥の有無を判定した結果について示す.

(1) 深層学習の条件

ここで試作した CNN は入出力層を含み 15 層構造である. 深層学習で学習させるレーザー超音波可視化画像は, 欠陥が存在する画像では, 超音波が欠陥に散乱されてからの

Key Words: 非破壊評価, レーザー超音波, 深層学習

^{〒 376-8515} 群馬県桐生市天神町 1-5-1・TEL/FAX:0277-30-1610

画像を用いる.対応する欠陥がない場合の画像は,欠陥が存 在する場合と同等の時刻のものを準備した.まず、欠陥がな い場合、存在する場合に対して、それぞれ101枚の画像を準 備し、その8割の81枚をトレーニングデータ、2割の20枚 をテストデータとして用いる.なお,計算の高速化のため, 410×254の画素数を50×30にリサイズし、20エポック分学 習させた場合の結果を図3に示す.図3(a)では学習回数に 対する損失値(モデルの予測値と正解値の差),図3(b)では 学習回数に対するラベル分けの精度を表しており,それぞ れの図中の記号はトレーニングデータ,実線はテストデー タに対する結果を表していることに注意されたい. 図 3(a) より,損失値のトレーニングデータは学習回数を繰り返し ても、さほど変化ないことがわかる. 一方, 図 3(b) より, 精 度のトレーニングデータは学習回数を繰り返す程,精度が 上昇しており、一見良い結果のように見える. しかしなが ら、損失値と精度はどちらもテストデータでは、ばらついた 値を示しており,精度が不十分であると考えられる.

そこで、ここで用いた欠陥がない場合、欠陥が存在する場 合のそれぞれ 101 枚の画像を, 30 倍に水増しし, 3030 枚と し、その8割の2424枚をトレーニングデータ、その2割の 606枚をテストデータとして準備し、同様の深層学習を行っ た. また, 計算の高速化のため, 410×254の画素数を 80×50 にリサイズし、20エポック分の学習を行った.この時の結果 を図4に示す.図4(a),(b)は、それぞれ図3と同様、学習回数 に対する損失値,学習回数に対するラベル分けの精度を示 している.図4より、トレーニングデータでは学習回数を繰 り返すほど、損失値は下がり、精度は上昇していることがわ かる.また、テストデータはトレーニングデータと同様な精 度を示しており、汎用性の高いモデルが作成されたことが 分かる.しかしながら、学習回数が10回を超えると、トレー ニングデータ、テストデータの結果に変化がなく、これを上 回る精度は望めないことが分かる.これより,精度が一定と なり始める学習回数は10回が最適であり、その時の損失値 は0.05,精度は98.34%であった.

最後に、この時の学習結果を用いて、別の実験条件で得ら れたデータを用いて欠陥の有無を判定することを行った.結 果を図5に示す.図5(a),(b)はそれぞれ図1の試験体におい て、探触子の設置位置を(x,z)=(119mm,44mm)とした場合 の、欠陥が存在する場合、ない場合の試験体に対する欠陥有 無の判定を行った結果を示している.ただし、いずれの場合 も縦軸は欠陥の存在確率を示している.また、横軸は、時間 軸に対応し、データ番号1で探触子から入射波を送信し、欠 陥がある場合は、およそデータ番号150付近で人間の目で 欠陥からの散乱波を、180付近で底面からの反射波を確認で きることに注意されたい.図5(a)より、データ番号50程度 までは、欠陥は存在しないと判定されているが、その後、欠

図5 学習画像が多い場合の深層学習結果を用いた欠陥有無の判 定結果(a)欠陥が存在する場合の欠陥が存在する確率(b)欠 陥が存在しない場合の欠陥が存在する確率.

陥が存在する確率が急激に上昇することがわかる.一方,図 5(b)の欠陥がない試験体に対する欠陥有無の判定結果に着 目すると,図5(a)に比べて判定結果にバラつきが見られる ものの,同様にデータ番号100以降で特に欠陥が存在する 確率が高く,誤判定を招いている.この結果に対しては,実 際の画像データと照らし合わせる等,今後,その原因を詳細 に検討する必要がある.

5. まとめと今後の課題

本研究では、レーザー超音波可視化試験結果に対する深 層学習を行った.人間の目で欠陥の有無等を判断するレー ザー超音波可視化試験結果を機械に学習させることにより、 鋼材試験片中の人工欠陥の有無を判断させた.学習と同様 の条件下での画像に対する欠陥有無の判定結果は比較的良 好な結果を得た.しかしながら、学習と異なる条件下の画像 に対する欠陥有無の判定は、課題が残る結果となった.今後 は更に学習回数を増やし、高精度化を目指すことを行う.ま た、欠陥種別の判定等、様々な応用も行う予定である.

参考文献

- 廣瀬壮一:超音波による構造物診断,日本ロボット学会誌, vol.36(3), pp.186-190, 2018.
- 2) 岡谷貴之: 画像認識のための深層学習, 人工知能学会誌, vol.28,No.6, pp.962-974, 2013.
- 高坪純治, 王波, 劉小軍, 鈴木修一, 王暁東:レーザー超音波可 視化技術の開発と欠陥検出への応用, 非破壊検査, vol.63(3), pp.142-147, 2014.