ハイパースペクトルカメラおよびパターン認識を用いた土種分類

株式会社フジタ	正会員	○坂井	郁也
株式会社フジタ	非会員	山本	新吾
株式会社フジタ	正会員	千葉	拓史

1. はじめに

土石流などの災害復旧作業を迅速かつ安全に行う ためには,建設機械の走行ルートを事前決定するこ とが重要である.しかし,立入制限区域に指定され た災害現場では原位置試験を行うことが困難であり, 地点値である原位置試験は広範囲の測定を短時間で 行うことも難しい.

原位置試験以外の方法では、UAV と連携して画像 計測を行うリモートセンシングによって、迅速な広 範囲の簡易判定を行う既存技術が存在する.ただし、 その技術は画像情報から精度よく土の種類および含 水比を特定しなければならない課題を有している.

本研究では、画像情報から精度よく土の種類を特 定することを目的とし、RGBカメラよりも波長情報 を高分解能に画像取得可能なハイパースペクトルカ メラに着目した.なお、ハイパースペクトルカメラ は工業・農業等に従来用いられていたが、建設業に おいても山岳トンネルの切羽での地質判定等に用い られ始めている.特に本稿では、10種類の土(土A、 土B、…、土J)のハイパースペクトルデータ計測およ びパターン認識により、土の種類の特定に有効性が 確認されたことについて報告する.

2. 屋内データ計測

実験環境として,暗室に撮影ボックスとその周囲 に光源として3台のハロゲンランプを配置した.そ して,相対反射率の算出に用いる白板の計測を行っ た.その後,パターン認識のモデル構築に用いるた めに,撮影ボックス内に土を入れたバットを設置し, 表面の様相を金属ヘラで変化させた土のみを上部か らハイパースペクトルカメラで各種3回計測した. その様子を図1に示し,その計測条件を表1に示す. また,構築モデルの有用性の検証のため,小鉢に各 種土をそれぞれ入れて並べたものも撮影ボックス内 にて $\pm A \sim \pm F \ge \pm G \sim \pm J \ge \overline{0}$ 1回計測を行った.

3. 波長-土種別の相対反射率グラフ

土の波長毎における相対反射率を算出したグラフ を図 2に示す.この図から,それぞれ異なる波長の 相対反射率を10種の土が有していることを確認した.

図 1 計測環境

表 1 計測条件

項目	説明
測定波長	460 ~ 940 nm
波長分解能	5 nm
データビット数	10 bits
	1280×1024 pixel
土の計測サイズ(横×縦)	28 cm×23 cm

キーワード 土質,ハイパースペクトルデータ,パターン認識 連絡先 〒243-0125 神奈川県厚木市小野 2025-1 (株)フジタ 技術センター TEL 046-250-7095

-107-

4. データの可視化・パターン認識

リモートセンシングにおけるスペクトルデータの パターン認識においては、ピクセル単位でクラスラ ベルの分類を行うことが一般的である ¹⁾. それに準 じて,モデル構築用データにピクセル単位で土の種 類のラベリングを行った.そして,各種土の1回目 と2回目のデータからピクセル単位でランダムサン プリングを行ったものをモデル構築用訓練データセ ットとし、各種土の3回目のデータからピクセル単 位でランダムサンプリングを行ったものをモデル構 築用試験データセットとした. それら各クラスのデ ータ数を表 2に示す. これらのモデル構築用データ を用いて,既存の研究で有効性を示されている教師 あり分類の線形判別分析で特徴抽出した後に、教師 あり分類の Support Vector Machine (SVM)でハイパー スペクトルデータの検証を行った. なお,特徴抽出 として用いる線形判別分析で訓練データの分布を 3 次元散布図として可視化を試み、分類の有用性を事 前に確認した. その可視化図を図 3に示す. この図 から、各種土のクラスのデータがクラスタとして分 布し、クラスのデータ分布同士のオーバーラップが 少ないことから分類の有効性を定性的に確認した.

教師あり分類の線形判別分析で特徴抽出した構築 用訓練データを用いて SVM モデルを構築し,構築し たモデルを用いて試験データの分類を行うことで, ハイパースペクトルデータによる土の分類性能を評 価した.その結果を表 3に示す.最も分類率の低い 土 C であっても 98%と極めて高い分類性能を示すこ とから,本実験環境下での分類有効性を確認した.

最後に、小鉢上にある 10 種の土を対象にして構築 したモデルで分類を行い、分類結果に基づいてカラ ーリング画像として出力した.参考としてのスペク トル合成 RGB 画像とカラーリング画像を図 4・5 に 示す.土D および土G に多少の誤分類が見受けられ るが、対象を正しく分類していることを確認した.

5. おわりに

本研究では、ハイパースペクトルデータの有効性 を10種類の土の計測データに対してパターン認識に より確認した. 今後は、太陽光を光源にした土のス ペクトルデータを計測し、土の分類に有効な波長を 特定した UAV 用マルチスペクトルカメラを開発し て検証する予定である. また、本稿では報告してい ないが,含水比の分類も有効であることを確認して おり,現在機械走行指標との関連付けを進めている.

参考文献

 横矢, 岩崎: ハイパースペクトル画像処理が拓く 地球観測, 人工知能9巻4号, pp.357-365, 2014.

表 2 データセットの内訳

項目	説明
1クラス当りの訓練データ数	20,000
1クラス当りの試験データ数	10,000

表 3 各種土の分類精度

項目	分類率[%]	項目	分類率[%]
±Α	100	± F	99
±Β	100	±G	100
±C	98	±Η	100
±D	99	±Ι	100
±Ε	100	±J	100

図 3 データ分布の可視化

図 4 ± A~± Fのスペクトル合成画像(左)と分類 結果のカラーリング画像(右)

スペクトル合成画像	分類結果	
		±A ±B ±C ±D ±E ±F ±G ±H ±I ±I
		- T F

図 5 ± G~± Jのスペクトル合成画像(左)と分類 結果のカラーリング画像(右)