劣化進行度の大きい路線におけるひび割れ発生要因の検討

中日本ハイウェイ・エンジニアリング名古屋株式会社 名古屋支店 道路技術部 正会員〇高井 健志 中日本高速道路株式会社 名古屋支社 保全・サービス事業部 保全チーム 正会員 小山田 宏亮

1. 調査概要

高速道路の安全性向上に向け、舗装の性状を常に監視し、走行性の良い、良好な舗装を保つことが重要である。そこで、路面のひび割れに着目し、ひび割れ率の進行度を調査しているなか、伊勢自動車道(以下 伊勢道という)において、極端にひび割れの進行度が増加した事象が発生したため、FWD 測定結果からアスファルト混合物層の強度を確認することで、ひび割れ率と深層部の損傷について比較検討した。

2. 現状の問題点

伊勢道は伊勢関 IC~伊勢 IC の総延長 68km の自動車専用道路である。昭和 50 年 10 月に最初の開通区間である関 JCT~久居 IC 間 (21km) が開通し、その後順次延伸した。伊勢道においては、開通時期が異なること、および交通量が異なるため、7 通りの断面で構築されている。

伊勢道においては、路面性状測定を平成 22 年、平成 25 年、 平成 28 年に実施している。その測定結果から、ひび割れに着目 し、ひび割れ率の差を求めることで、3 年間に進行したひび割れ 率の劣化進行度を求めている。

平成 25 年から平成 28 年の劣化進行度と、平成 22 年から平成 25 年の劣化進行度を以下に示す。その結果、平成 25 年から平成 28 年の劣化進行度が 2 倍程度高くなっており、舗装体として、問題があると判断した。

問題があると判断した。 2-1 **劣化進行度(平成 25 年と平成 22 年の比較)**

平成 22 年に測定したひび割れ率と平成 25 年の結果を図-1 で比較する。平成 22 年のひび割れ率に対して、3 年間で 1.9 倍となっており、他の路線と比較しても同様な結果となっている。

2-2 劣化進行度(平成 28 年と平成 25 年の比較)

平成 25 年に測定したひび割れ率と平成 28 年の結果を図-2 で比較する。平成 25 年のひび割れ率に対して、3 年間で 3.6 倍となっており、前回測定時の結果と比較すると、大きく増加している。

3. ひび割れ発生要因の検討

ひび割れ劣化進行度が大きく増加した要因について分析するため、次の検討を行った。

- (1) FWD 測定結果から求めた残存等値換算厚 TAO と総通過輪数から求める必要 TA との比較
- (2) 逆解析を用いた舗装各層の弾性係数を推定し、強度低下箇所の検討
- (3) FWD 測定から求めたアスファルト混合物層の弾性係数と、ひび割れ劣化進行度の相関検討
- (4) FWD 測定で弾性係数が小さい箇所における、コア採取による深層部健全度評価
- (5) ひび割れ劣化進行度が大きいが、深層部が健全な箇所におけるアスファルト試験

キーワード 劣化進行度, FWD, 弾性係数, アスファルト試験 連絡先 〒460-0003 愛知県名古屋市中区錦 1-8-11 DNI 錦ビルディング 中日本ハイウェイ・エンジニアリング名古屋株式会社 TEL052-212-4552

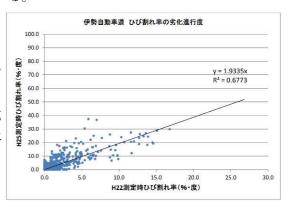


図-1 H25-H22 のひび割れ劣化進行度

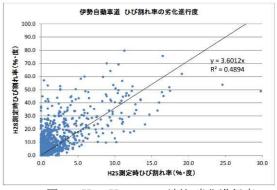


図-2 H28-H25のひび割れ劣化進行度

3-1 残存等値換算厚 TAO と必要 TA の比較

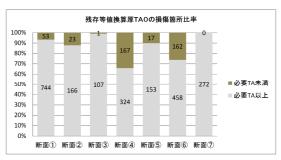
FWD 測定結果から、残存等値換算厚 TAO を推定した。また、 総通過輪数から必要 TA を求め、残存等値換算厚 TAO が必要 TA を満足していない箇所数を整理した。その結果、舗装断面④で 34%、舗装断面⑥で 26%の箇所で必要 TA 不足であった。(図-3)

3-2 舗装各層の弾性係数

アスファルト混合物層の健全度を評価するため、任意の 850 測点舗装各層(表層・基層・アスファルト安定処理路盤)の弾 性係数を逆解析プログラム「BALM」により推定した。表-1 に 舗装断面ごとの弾性係数を示す。

3-3 ひび割れの劣化進行度区分別評価

ひび割れの劣化進行度を「0%以上 1%未満」「1%以上 3%未 満」「3%以上 5%未満」「5%以上 10%未満」「10%以上」の 5 区分に分類した。必要 TA 不足箇所が多く、深層部に問題がある と推定される舗装断面④⑥を対象とし、下記に示すひび割れ劣 化進行度区分別に、各層の弾性係数を求め、表-2に整理した。


3-4 コア採取による深層部健全度評価

ひび割れ率が大きく、深層部の弾性係数が大きい箇所(写真-1: KP109.975) と、弾性係数が小さい箇所(写真-2: KP127.725) のコア採取を行い、目視確認を行った。

深層部の弾性係数が小さい箇所においては、アスコン層全層に ひび割れが発生しているが、深層部の弾性係数が大きい箇所では、 基層以下にひび割れは発生していなかった。

3-5 深層部が健全な箇所におけるアスファルト試験

上記写真-1の箇所および近接で同様な損傷が発生している箇所 において、表層部の劣化状況を確認するため、アスファルト針入 度試験、アスファルト軟化点試験、アスファルト伸度試験を行っ 写真-2 $\mathrm{KP}127.725$ の路面状況と採取コア た。表-3 に示す通り、「針入度は非常に低い」、「軟化点は非常に 高い」、「伸度は非常に小さい」の結果であり、アスファルトが劣 化し、延性やたわみ性、ひび割れ抵抗性を損失している状態にあ るといえる。その結果、該当箇所においては、表層部に多数のひ び割れが発生していると推定される。

残存等値換算厚 TA0 の損傷箇所比率

舗装断面ごとの舗装各層の弾性係数 単位:Mpa

	断面①	断面②	断面③	断面④	断面⑤	断面⑥	断面⑦
表層E1	7,942	6,727	6,260	6,191	7,920	7,547	10,112
基層E2	6,926	10,559	8,131	8,029	7,790	8,483	3,855
上層路盤E3	4,970	4,167	3,334	3,415	4,836	4,398	6,160
下層路盤E4	858	248	221	263	393	628	2,199
路床E5	286	445	294	313	271	334	872

舗装断面46の各層弾性係数

単位:Mpa

劣化進行度区分		表層 E1	基層 E2	上層路盤 E3	下層路盤 E4	路床 E5
区分1	0%以上 1%未満	7,354	9,042	4,320	514	337
区分2	1%以上 3%未満	8,059	8,334	4,907	755	329
区分3	3%以上 5%未満	6,289	7,300	3,335	325	325
区分4	5%以上 10%未満	6,150	7,060	3,241	292	295
区分5	10%以上	5,061	7,766	2,504	108	300

写真-1 KP109.975 の路面状況と採取コア

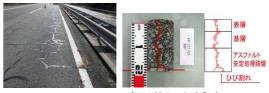


表-3 ひび割れ率が大きく、深層部の弾性係 数が大きい箇所のアスファルト試験結果

)		KP109	.975	KP110.600		
	針入度	11(1/10mm)	NG	7(1/10mm)	NG	
	軟化点	67.2°C	NG	73.5℃	NG	
	伸度	1cm	NG	1cm	NG	

4. おわりに

今回、伊勢道において、ひび割れ率の劣化進行度が著しく増加したことを受け、ひび割れ発生要因の検討を 行った。その結果、深層部の弾性係数が小さい箇所においては、基層以下にもひび割れが発生していたが、深 層部の弾性係数が大きい箇所では、基層以下にひび割れは発生していなかった。ただし、この基層以下にひび 割れは発生していない箇所においては、アスファルトが劣化し、延性やたわみ性、ひび割れ抵抗性を損失して いる状態にあり、表層部にひび割れが発生したものと推定する。

また、アスファルト試験を実施した箇所の舗装は21年経過(大型車断面交通量は25百万台)しており、 今後、同様な条件の基に、供用年数が21年間経過するまでの、5年目・10年目・15年目の箇所のアスファ ルト試験を実施することで、劣化曲線を求め、予防保全に努めていきたいと考える。