RCアーチ橋の耐震性能照査

東日本高速道路(㈱新潟支社 正会員 塩畑 英俊 正会員 宇山 友理 大日本コンサルタント㈱ ○正会員 伊藤 裕章 正会員 登石 清隆 (株)コムスエンジニアリング 正会員 土屋 智史

1. はじめに

管内の橋梁震災対策を進めており、管内の特殊橋梁で ある RC アーチ橋の小清水橋 (図-1,表-1) について耐震 性能照査を実施したので、その結果を報告する.

RC アーチの耐震解析では、地震時に軸力変動が生じる こと, 直角方向の挙動でねじり剛性の評価が難しいこと, また本橋は支間長に比べてアーチリブ幅が広く、棒部材

3. プッシュオーバー解析結果

【橋軸方向】

1.80

1.60

1.40

橋全体の損傷過程を把握するため、プッシュオーバー 解析を実施した. その結果, 支柱→アーチリブ→補剛桁 の順に鉄筋降伏が進み,橋軸は 1.4cm, 直角は 2.6cm 程 度の変位で塑性化が始まることがわかった(図-3).

⑥補剛桁A1側鉄筋降伏

⑤補剛桁A2側鉄筋降伏

キーワード 耐震性能照査、RCアーチ橋、ねじり非線形、せん断耐力、ファイバーモデル、三次元FEM 連絡先 〒950-0088 新潟県新潟市中央区万代2-3-16 TEL025-241-0114 FAX025-244-7328

4. ファイバーモデルによる動的解析結果

動的解析は、軸力変動の影響を考慮するため、図-4 に 示すファイバーモデルで解析した.

橋軸方向は支柱でわずかに曲げ降伏が生じる程度ある が、直角方向はアーチリブのせん断とねじり、支柱のせ ん断耐力が不足する結果となった(表-2).なお、最大応 答変位量は桁遊間 50mm の範囲内で収まっていた.

照査	部位	橋軸方向		直角方向				
				ねじり線形		ねじり非線形		照査基準値
坝日		\$17° I	\$17° Ⅱ	\$17° I	身イプⅡ	\$17° I	१४८२° Ⅲ	
鉄筋 ひずみ (引張)	アーチリフ゛	0.66	0.83	0.50	0.52	0.49	0.48	鉄筋降伏ひずみ
	補剛桁	0.47	0.61	0.24	0.24	0.21	0.20	
	支柱①	0.94	1.44	0.44	0.44	0.34	0.33	
	支柱②	1.01	1.38	0.50	0.55	0.40	0.40	
コンクリート ひずみ (圧縮)	アーチリフ゛	0.43	0.46	0.40	0.42	0.38	0.38	Co最大圧縮応力 発生ひずみ2000 μ (道示皿)
	補剛桁	0.25	0.25	0.20	0.21	0.19	0.19	
	支柱①	0.32	0.33	0.31	0.32	0.27	0.28	
	支柱②	0.32	0.34	0.31	0.32	0.27	0.28	
せん断	アーチリフ゛	0.61	0.68	1.84	1.89	1.88	1.85	せん断耐力Ps (道示 V)
	補剛桁	0.40	0.41	0.55	0.55	0.50	0.49	
	支柱①	0.61	0.76	1.06	1.10	1.00	0.97	
	支柱②	0.82	0.77	1.18	1.19	1.11	1.05	
ねじり	アーチリフ゛	-	-	2.80	2.84	0.98	0.94	線形:終局耐力 (道示亚) 非線形:降伏耐力 (文献1)
	補剛桁	-	-	0.57	0.60	0.76	0.74	
	支柱①	-	-	0.25	0.26	0.13	0.12	
	支柱②	-	-	0.25	0.25	0.13	0.12	
※上表は昭香基準値に対する動的解析最大応答値(3波平均)の割合を示す。								

5. アーチリブのねじり剛性評価

ねじり剛性を弾性(線形)で解析した結果,道示Ⅲの 終局ねじり耐力を超過した.このため,降伏以後に剛性 低下するねじり非線形性を適切に評価する必要があった.

まず,等価線形化法で剛性低下の評価を試みたが,固 有周期が 0.2s と短く,初期剛性低下による長周期化で応 答が増大し,収束する等価剛性が求まらなかった(図-5).

そこで、1部材を曲げ要素とねじり要素を持つ二重部 材にモデル化し、それぞれに非線形性を与えて解析した

(図-6). また,ねじり非線形の定義¹⁾も見直した結果,3 波平均ではねじり降伏に至らないことを確認した(表-2).

6. アーチリブのせん断耐力照査

ねじり剛性見直し後の解析結果においても、アーチリブの直角方向せん断耐力Psは不足する結果となった(表-2).

しかし、アーチリブ は支間 53.5m に対して 梁高に相当するリブ 幅は9mあり,かつ上 下面の軸方向鉄筋は 密に配筋されている ため, 棒部材のせん断 耐力式では適切に評 価できないと考えた. そこで、FEM モデ ル2で,ファイバー解 析の最大断面力を基 準としたプッシュオ ーバー解析を行った. この結果,最大断面 力の110%程度まで剛 性低下は生じず,必要 な耐力は有している と判断した(図-7.8).

7.まとめ

図−8 FEM 解析ひずみ図

L1 地震に対し設計施工された RC アーチ橋について, L2 地震に対する耐震性能を照査した.アーチリブ直角方 向のねじりとせん断が課題となったが,ねじり非線形を 考慮したファイバーモデルで動的解析・照査し,また面 部材に近いアーチリブのせん断耐力を FEM 解析で検証し, 橋全体として所要の耐力を有していることを確認した. 参考文献

1) 大塚久哲・服部匡洋, RC 橋梁のねじり非線形解析ツー ルと照査手法, 2015.

2) Maekawa,K., Okamura,H. and Pimanmas,A., Nonlinear mechanics of reinforced concrete, SPON PRESS, 2003.

-562