JR東日本	東京工事事務所	正会員	○冨田	直幹
JR東日本	東京工事事務所	正会員	佐々木	尚美
JR東日本	東京工事事務所	正会員	森部	伸一

1. はじめに

鋼橋とコンクリート橋をスパン中間部で接合する複合橋は,鋼・ コンクリートそれぞれの特性を生かした合理的構造として実績が ある.接合部は,主に図1-1に示す鋼殻セルと呼ばれる接合体を用 い,鋼殻セル部のスタッド・支圧板により力の伝達を行っている. 鋼殻セル高は,鋼板と接合部間の中立軸の偏心を小さくするため, 出来るだけ小さいことが望ましいが,製作・PC緊張の施工性を鑑み 60~80cm 程度が標準とされている.また,鋼殻長さは応力分散効果 を高めるため,鋼殻高の2~3倍が標準とされている¹⁾.

桁高が非常に高い場合には、鋼殻セルが多段配置となり、経済 性・施工性に劣る上, PC 配置の制約も受ける. そこで図 1-2 に示す ようにセル高を上げ,経済性・施工性の向上を図る検討を行った.

PC 緊張力により接合部を全圧縮とすることで,中立軸偏心は問題 ないと考えるが,セル高を上げることで PC 緊張材の配置本数が増 え,それに伴うスタッドの負担割合の増加および,必要本数が増大 する懸念がある.加えて,鋼殻高さを上げることにより,単一の鋼 殻内における活荷重等による応力変動の影響が大きくなるため,プ レストレスにより発生するスタッドの初期応力状況や力の方向性 について,検討する必要がある.

そこで、鋼殻ウェブ部にずれ止めを設けることでの応力分散効果 及びスタッドへの負担の軽減、またプレストレスを受けた状況下で 多段配置されたスタッドの応力状況等の把握を目的として試験を 実施した内容について報告する.

2. 試験内容

図 2-1 に示すように、コンクリート試験体に鋼殻セルを模擬した 鋼板を取り付けた試験体と鋼殻の無い試験体を用いて計3ケースの 緊張試験を行った.緊張力は上縁圧縮・下縁引張の状態から最終的 に全圧縮となるように、上段から順に740kN/段、計約2960kN (PC 鋼棒の降伏直前)の緊張力を導入した.また、図2-2 に示すように 鋼殻を設置した試験体では、スタッドを上下のみに設置したケース ①と、上下側面に設置したケース②において試験を行った.スタッ ドのひずみゲージは力の方向を確認するため、全て緊張側に設置し

た. コンクリート部に関しては,緊張力分布を考慮し,プレストレスの有効範囲となる試験鋼殻高(D)に対 する 1D の位置と,十分な有効範囲ではない 0.5D の位置にそれぞれ,鋼殻中央部および側面側のコンクリー ト内部にひずみゲージを設置した.

キーワード 複合橋, 鋼殻セル, スタッド

連絡先 〒151-8512 東京都渋谷区代々木二丁目2番6号 JR 新宿ビル 東日本旅客鉄道株式会社 TEL 03-3379-4353

側面図

副殻ヤル

:コンひずみ計測位置(1D)
図 2-1 試験体側面図(鋼殻あり)

図 2-2 試験体断面図 (鋼殻あり)

3. 緊張試験結果

緊張試験により,鋼殻およびスタッド配置による緊張力分布への 影響およびスタッドの応力分散効果について確認を行った.緊張試 験の結果,プレストレスの有効範囲となる 1D 付近ではケースによ る大きな差異は確認出来なかったため,本論文では 0.5D 付近のひ ずみに関する報告を行う.

1)緊張力分布(コンクリートひずみ)

緊張力分布に関しては、一例として鋼殻なしのケースと鋼殻と スタッドを上下側面に設置したケース②の結果を示す.試験体中 央部のコンクリートひずみでは、鋼殻なしのケースにて上縁と下 縁で多少ばらつきが見られるが、ケース②ではばらつきが抑えら れていることが確認できた(図3-1).また、側面側のコンクリー トひずみにおいては、鋼殻なしのケースでは上縁・中央・下縁で ばらつきが非常に大きいが、ケース②において、ばらつきが大き く解消されていることが確認出来た(図3-2).また、スタッドは 上下のみよりも、側面に設置したケースのほうが、効果が高いこ とも確認した.

2) スタッドの発生ひずみ

鋼殻のスタッドを上下のみに設置したケース①と上下側面に設 置したケース②を比較した結果を表 3-1 に示す.上下のみにスタ ッドを設置した場合,負担する力は鋼殻の両端でばらつきが大き い.一方,上下側面に設置した場合,ばらつきを抑えることがで き,応力分散効果が高いことを確認した.しかし,上縁・下縁で 比較すると,ばらつきの差は改善されているものの均等に緊張力 は分散されていない.側面のスタッドひずみに着目しても,同様 の結果(表 3-2)であり,緊張位置に近いほどその差が顕著であ る.また,スタッドが受ける力の方向は一様ではなく,鋼殻中心 から外側に向かう力を受けていることが確認できた.

4. 考察とまとめ

鋼殻高を上げても鋼殻上下および側面にスタッドを設置すること で効率的な緊張力の導入となることを確認できた.スタッドへの負 担に関しては、スタッドの負担の軽減および分散効果が確認できた が、位置によるばらつきが大きい.これは、緊張側の側面中央付近 のひずみが小さく、緊張位置から離れるに従い、ひずみ分布が均等 に分散している結果から、緊張力の分布角度による影響と考えられ る.よって、緊張力の分布角度を考慮したスタッド配置とすること でより高い効果を得ることが出来ると考えられる.また、スタッド が受ける力に方向性があるため、スタッドの設計を行う際は、これ らを考慮する必要がある.今後検討を深度化するにあたり、本結果 を有効に活用していきたい.

参考文献

1)社団法人プレストレストコンクリート技術協会(複合橋設計施工基準(案)平成11年12月)

				-			
দ_ 7 0	ひずみ	-233	-21	208			
7 - X2	力の方向	↓	Ļ	\rightarrow			
	下側スタッドひずみ(μ)						
	計測位置	左端	中央	右端			
4 7 1	ひずみ	-66	76	353			
7-X U	力の方向	Ļ	Ť	\rightarrow			
<u> </u>	ひずみ	-150	49	272			
·)-x2	力の方向	←	\rightarrow	\rightarrow			
	側面スタッドひずみ(μ)						
	計測位置	左端	中央	右端			
F (Bil	ひずみ	-233	-21	208			
上侧	力の方向	←	<i>←</i>	\rightarrow			

工员	力の方向	←	↓	\rightarrow
御声上段	ひずみ	-129	27	242
侧山上权	カの方向	←	Ť	\rightarrow
侧黄山山	ひずみ	-35	53	240
侧面中天	力の方向	Ļ	\rightarrow	\rightarrow
侧面下侧	ひずみ	-50	44	239
侧山下侧	カの方向	←	Ť	\rightarrow
下側	ひずみ	-150	49	272
ド1則	カの方向	←	\rightarrow	\rightarrow