CFRPロッドを用いて接合したプレキャスト部材の曲げ試験

新日鉄住金マテリアルズ(株) 正会員 〇中田恵理

- 新日鉄住金マテリアルズ(株) 正会員 林田道弥
- 新日鉄住金マテリアルズ(株) 吉澤弘之 正会員

1. はじめに

シールドで直接切削可能な仮壁を構築する際に, CFRP を補強筋として用いたプレキャスト部材が用いら れることが多い.近年,空頭制限があり杭長が長くできない場合や、シールド径が大きいため杭長や重量の 問題により輸送困難なケースが増加している. そのため現場接合で短時間かつ確実にプレキャスト杭を一体 化する技術が求められている. 今回 CFRP ロッドと樹脂を用いて CFRP 格子筋で補強された2体のブロック を一体化し、曲げ試験を行った.ブロックの母材には、コンクリートより切削性の優れたモルタルを用いた.

2. 供試体概要および実験概要

図1の CFRP 格子筋 C8 を 8 枚重ねて補強した長さ 2000mm のモルタルブロックを, 継ぎ部材である CFRP ロッド中弾性 617を4本用いて接合した.写真1に示すように,ブロックの穿孔部にエポキシ樹脂を充填し, CFRP ロッドを挿入,ブロックの接合面にもエポキシ樹脂を塗布し2体のブロックを一体化した.ブロック の主筋に用いた CFRP 格子筋と,継ぎ部材に用いた CFRP ロッドの物性は表1の通りである. 定着区間の CFRP 格子筋および重ね継手部の CFRP ロッドにはひずみゲージを貼りひずみを測定した.一体化した長さ 4000mm の供試体を 3600mm のスパンで 4 点曲げ試験を実施した.供試体がせん断破壊するのを避けるため、せん断 区間には鋼製スターラップを密に配筋した.表2に示すように試験は定着長を変えて3ケース実施し,等曲 げ区間内に定着長が収まるように等曲げ区間長を設定した.載荷は 20kN/min の荷重制御にて行った.

呼び名	標準断面積 mm ²	引張強度 N/mm ²	弹性係数 kN/mm ²
CFRPロッド	227.0	1,635	127
CFRP格子筋 C8	26.4	1,200	100

呼び名	mm^2	N/mm ²	kN/mm ²
CFRPロッド φ17	227.0	1,635	127
CFRP格子筋 C8	26.4	1,200	100

表 2 試験ケース						
Case	定着長	せん断区間	等曲げ区間			
No.	<i>l</i> mm	<i>a</i> mm	b mm			
1	340 (20 <i>d</i>)	1,200	1,200			
2	510 (30 <i>d</i>)	1,200	1,200			
3	850 (50d)	900	1,800			

キーワード 連絡先

表1 材料物性

シールド,直接発進,CFRP ロッド,CFRP 格子筋,プレキャスト杭,現場接合 〒104-0061 東京都中央区銀座7丁目16-3 日鐵木挽ビル5階 Tel.03-6859-3442

3. 実験結果

図2の荷重-変位図からモルタルの初期ひび割れ後ほぼ線形で荷 重が上昇していることがわかる.破壊状況は写真3の赤丸部に示す ように供試体中央からCFRPロッドの芯かぶりの位置に部材軸方向 のひび割れが生じていた.その部分を手斫し内部を確認したところ 写真4のように、ロッドを接着した樹脂とモルタルとの界面に亀裂 が生じており、破壊形態はCFRPロッドの引き抜けであった.Casel、 3の破壊形態も同様にCFRPロッドの引き抜けであった.そ3に試 験結果の一覧を示す.最大荷重はCasel~3で各々126kN、188kN、 353kNとなり、ロッドの定着長にほぼ比例した結果が得られた.

写真3 破壊状況(Case2)

表 3 試験結果一覧

Case No.	1	2	3
モルタルの圧縮強度 N/mm ²	70.8	56.0	33.6
定着長 mm	340 (20d)	510 (30d)	850 (50d)
最大荷重 kN	126	188	353
最大荷重時のCFRP ロッドの引張荷重 kN	129	196	287
最大付着応力度 N/mm ²	4.8	4.9	4.3
破壊形態	ロッドの引き抜け		

表3に示す最大付着応力度は,最大荷重 時のCFRPロッドの1本あたりの荷重を, 図3に示す定着長と樹脂の周長を掛けた面 積で除したものである.各ケースの最大付 着応力度を比較してみると,図4に示すよ うに定着長によらず,最大付着応力度はほ ぼ一定となった.定着区間のCFRP格子筋 のひずみとCFRPロッドのひずみから求め

250 200 NN 150 ₽ 100 Case1 50 Case2 Case3 0 10 20 30 40 0 変位 mm 載荷荷重と変位の関係 図 2 定着長

300

■ -800 -600 -400 -200 0 200 400 600 800 接合面からの距離mm 図5 主筋荷重と距離の関係

た CFRP 格子筋と CFRP ロッドに発生している引張荷重と,接合面からの距離の関係を図5に示す.1)ブロ ックの引張側の主筋である CFRP 格子筋の等曲げ区間荷重の最大値と,接合面の CFRP ロッドの荷重がほぼ 等しいこと,2)ブロックの引張側の主筋である CFRP 格子筋の荷重が接合面に近づくと減少し,格子筋の荷 重が終局まで接合面の CFRP ロッドに伝達していること,により継手構造が成立していると言える.

重 kN

筋材の引張荷

4. 結論

- ・現場施工を想定した CFRP ロッドと樹脂を用いた分割杭の接合が可能であった.
- ・定着長によらず,付着応力度はほぼ一定となった.このことより,適切な安全率をとった許容付着応力度 を用いた継手構造の設計が可能であると考えられる.