DICとFEMによるRCはりの変形・破壊挙動の定量的比較

茨城大学	正会員	○車谷 麻緒
茨城大学	学生会員	小圷 祐輔
茨城大学	学生会員	橋口 和哉
茨城大学	学生会員	佐々木 浩武

1. はじめに

鉄筋コンクリート(RC)は、力学特性がまったく異なる 鉄筋とコンクリートを組み合わせた構造であるため、その 力学挙動は非常に複雑で非線形なものとなる.近年、RC 部材の平均的な挙動をモデル化するのではなく、鉄筋とコ ンクリートの材料挙動を別々にモデル化して、鉄筋コンク リートの非線形力学挙動を再現する数値解析が研究されて いる.この種の数値解析の妥当性を検証するには、荷重-変位関係だけでなく、ひび割れ進展を含む部材の変形・破 壊挙動も実験結果と定量的に比較する必要がある.

荷重-変位関係を実験で計測して数値解析と比較するの は容易ではあるが,RC部材の変形・破壊挙動の分布を実 験で計測して,数値解析と定量的に比較するのは容易では ない.RC部材の破壊挙動には,予測が困難なコンクリー トのひび割れ進展挙動が含まれるため,実験結果と解析結 果の比較を行う以前に,ひび割れ進展を含む変形・破壊挙 動を数値解析で定量的に再現するのも,実験で定量的に計 測するのも,両方困難であるというのが実状である.

そこで本研究では, RC はりの DIC 計測と FEM 解析を 行い, ひび割れ進展挙動を定量的に比較検討した結果を示 す.実験ではひずみ分布が計測され,解析ではひずみ分布 が再現されるので,同一のカラーバーを用いてひずみ分布 を可視化することができ,実験と解析における変形・破壊 挙動を定量的に比較検討することが可能となる.

2. DIC

RC はりの変形・破壊挙動を定量的に計測する方法とし て、本研究ではデジタル画像相関法(DIC)に基づく画像 計測を適用し、試験体のひずみ分布を計測する.本研究で 用いる DIC 計測は、市販のデジタルカメラを用いて、試 験体のひずみ分布を計測し、コンクリートの微細なひび割 れ進展を可視化することを目的として、著者らが独自に開 発した方法である¹⁾.

3. FEM

数値解析には、ひび割れの3次元幾何形状を再現できる 有限要素解析を適用する.著者らが開発した破壊力学に基 づく損傷モデルを用いて、ひび割れ進展挙動をひずみの局 所化として再現する²⁾.既往の研究において、本研究で採 用する損傷モデルを用いた有限要素解析は、メッシュ分割

図-1 せん断補強筋の異なる RC はりの 4 点曲げ試験

に依存せずに RC 部材の 3 次元破壊挙動を精度よく再現で きることを示している.

4. 検証例題

4.1 条件

図-1 に示すように、せん断補強筋の異なる RC はりの 4 点曲げ試験を実験計測と数値解析の対象とする. 図中の S0 はせん断破壊を想定したせん断補強筋のない RC はり, S10 は曲げ破壊を想定したせん断補強筋 10 本を有する RC はりである. 試験体の表の面は DIC 計測を行い、その反 対側の裏面のひび割れをマーカーで記録した.

DIC 計測においては,2400 万画素のデジタルー眼レフ カメラを2台使用し,試験体の表面全体を計測できるよう にした.照明には LED 投光器を2台使用し,画像相関法

キーワード:デジタル画像相関法,有限要素法,コンクリート,ひび割れ, RC はり

〒316-8511 茨城県日立市中成沢町 4-12-1, 茨城大学工学部, TEL: 0294-38-5162, FAX: 0294-38-5268

-507

(c) Observed crack paths on the back side of test-specimen

図-3 S0 における DIC と FEM の最大主ひずみ分布の比較

の精度を上げるため,試験体の撮影面に黒と赤のスプレー でランダム模様を付与した.

数値解析においては、四面体一次要素を用いて、S10の 拡大図のように、異形鉄筋の幾何形状も有限要素メッシュ に反映している. x方向と z方向の対称性を考慮して、RC はりの1/4 領域を数値解析の対象とする.両モデルともに、 1/4 モデルの要素数は約 70万,節点数は約 12万である. 鉄筋とコンクリートの材料パラメータは図-1 に示す通り とする.すべての材料パラメータを実験から定めるのは困 難であるため、それぞれ平均的な値を与えることとした. 4.2 結果

S0 の荷重-変位関係を図-2,最大主ひずみ分布を図-3 に,S10 の荷重-変位関係を図-4,最大主ひずみ分布を図-5 に示す.DIC においては,S0 では図-2 の○で示した画 像 13 枚,S10 では図-4 の△で示した画像 18 枚を使用し た.ひずみ分布の(a)と(b)はそれぞれ,荷重-変位関係 における(a)と(b)での結果を示している.(c)は実験終 了後における試験体裏側のひび割れ分布を示している.

FEM の結果は、荷重-変位関係、ひずみ分布ともに実 験結果を精度よく再現している. DIC と FEM の結果を比 較すると、S0 ではせん断破壊の特徴である斜めひび割れが 発生し、S10 で大きな斜めひび割れは発生せず、曲げひび

図-4 S10 における荷重-変位関係の比較

(c) Observed crack paths on the back side of test-specimen

図-5 S10 における DIC と FEM の最大主ひずみ分布の比較

割れのみとなっている.ひずみのカラー分布を見ると,ひ ずみの値はほぼ同レベルであり,数値解析の結果は RC は りの変形・破壊挙動を精度よく再現していることがわかる. 試験体裏側で観察されたひび割れ分布と比較しても,DIC と FEM から得られたひずみ分布の妥当性が見て取れる.

5. おわりに

本研究では、DIC と FEM を応用することで、RC 部材 の破壊挙動を同一のカラーバーを用いたひずみ分布として 定量的に比較できることを示した.さらに、著者らが研究 している損傷モデルを用いた有限要素解析は、破壊モード の異なる RC はりに対して、巨視的応答である荷重-変位 関係だけでなく、細部における変形・破壊挙動も定量的に 再現できることを示した.

参考文献

- 車谷麻緒,松浦 遵,根本 忍,呉 智深:コンクリートのひび割 れ進展計測のための画像解析手法に関する基礎的研究,土木 学会論文集 A2(応用力学), Vol.70, No.2, pp.I_135-I_144, 2014.
- 2) 車谷麻緒,根本優輝,相馬悠人,寺田賢二郎:コンクリートの破壊力学を考慮した鉄筋コンクリートの3次元破壊シミュレーションとその性能評価,日本計算工学会論文集,Vol.2016,pp.20160004,2016.