FEM によるボルト定着部の破壊性状に関する解析的検討

愛知工業大学	学生会員	○近藤駿光	愛知工業大学	正会員	鈴木森晶
愛知工業大学	正会員	宗本 理	愛知工業大学	正会員	嶋口儀之

1. 序論

複合構造の接合部であるアンカーボルト定着部は橋梁をは じめ多くの土木構造物に使用されている.近年では,笹子トン ネルの天井版落下事故のようなボルト定着部の損傷による甚 大な被害もあり,合理的な維持管理に向けた既設構造物の現有 性能を把握することが重要である.一方で,ボルト定着部の定 期点検は目視点検が主流で,詳細な損傷度合いの把握は困難で ある.既往の研究では,アンカーボルト接合部を対象とした実 験は多く実施されてきたが,解析的な検討は少ないのが現状で ある.そこで本研究では,ボルトの径と載荷速度がボルト定着 部の耐荷性能に与える影響について検討した.具体的にはボル ト径を3ケース,ひずみ速度効果を考慮した上で載荷速度を2 ケース変えた静的引抜き解析を実施し,耐荷力や破壊性状に ついて考察した.なお,本原稿ではボルト径の影響に関する 検討について示す.

2.1解析モデルと材料特性

2. 解析概要

本研究で用いた解析モデルを図-1に,各材料の応力-ひずみ関 係を図-2,各材料定数を表-1に示す.今回用いたモデルは、モ ルタル母材(縦 500mm×横 500mm×高さ 300mm)にアンカーボルト (直径 19. 1mm, 長さ 280mm, 埋め込み深さ 200mm)を埋め込んだ 形状とし、対称性を考慮したアンカーボルト定着部の 1/4 モデ ルとした. モルタルとアンカーボルトは共にソリッド要素を使 用した. 材料特性はモルタルには Von Mises の降伏条件を適用 し、圧縮側では塑性域で弾性係数の 1/100 で硬化するものとし た.一方,引張側では圧縮強度の1/10の引張強度を有し,引張 破壊エネルギーと要素の等価長さから算出した軟化勾配を有す る線形軟化モデルを用いた. 鋼材も同様に Von Mises の降伏条 件を適用し、降伏後には初期剛性の 1/100 の剛性で等方硬化す るモデルを用いた.載荷条件として、モルタル上部の端から 120mmの部分までを上から固定し、ボルト上端部に引抜き方向の 強制変位を与えた. モルタルとアンカーボルトの付着に関して, アンカーボルトとモルタル側面との間にせん断剛性や応力の低 減を考慮したずれ要素を用いた.

2. 2設計式に基づく破壊性状

埋め込み深さ別にコーン破壊と付着破壊の設計耐力式をまと めたグラフを図-3に示す.ここでの設計式はコーン破壊強度の 設計式を(1),付着強度の設計式を(2)として示す.

 $P_{c}(x) = \sigma_{cone}A_{c}(x)$ (1) $P_{b}(x) = \int_{0}^{x} \pi D\tau(x)dx$ (2) モルタルの引張強度は σ_{cone} ,有効コーン破壊面積は A_{c} ,ボルト 径は D,付着応力は $\tau(x)$ としている.グラフから,赤丸の埋め 込み深さ 200mm のときボルト径が小さいと付着破壊が起きやす く,ボルト径が大きいコーン破壊が起きやすい結果となる.

(a) コンクリート b) アンカーボルト
図-2 応力-ひずみ関係

Éc/100

表-1 各材料定数

	モルタル	アンカーボルト(D29)
弾性係数(Gpa)	21	210
ポアソン比	0.2	0.3
質量密度(g/cm)	2.35	7.85
圧縮強度	27.6	
引張強度	2.30	490
降伏強度		345

キーワード アンカーボルト 静的引抜き解析 ずれ要素 付着破壊 コーン破壊 連絡先 〒470-0392 愛知県豊田市八草町八千草 1247 愛知工業大学 TEL(0565)48-8121

-486

3. 実験結果

3. 1ボルト径を変えた静的引抜き解析

アンカーボルト定着部の設計式に基づく破壊性状のグラフ を図-4,解析で得られた荷重-変位関係について図-5に示す. 図-5から約2mm引き抜いたところで3ケースすべて最大荷重 をむかえていることが確認できた.また,各ケースにおいて 初期剛性の差が確認できた.これは、ボルト径の違いによっ て付着面積が異なり、ずれ要素のせん断弾性係数の低減度合 いに差が表れたことが考えられ、3.2節でも考察する.これ らのことから、ボルト径が大きくなるほど最大荷重が大きな 値になり、図-4に示したように、設計式と同じ傾向が得られ た.

3.2 破壊性状・ずれ要素残存付着率

最大荷重時の破壊性状として最大主ひずみ分布とずれ要 素残存付着率を図-6, 図-7 に示す. 図-6 の(a)は D19, (b) はD29, (c)はD38のモデルとなっており,最大主ひずみ分布 はコンクリートが十分ひび割れていると想定される 2000 µ を最大とし、ずれ要素残存付着率は 0.1 になった時付着破 壊が生じていると判断した. (a)では、ボルト周辺部以外に はひび割れに相当する主ひずみはほぼ発生していないため 付着破壊が発生している. それに比べて(b)では、ボルト底 面部付近では付着破壊, モルタル上面部にはひび割れに相当 する主ひずみが表れていることからコーン破壊が確認でき る. (c)では、ボルト底面部からモルタル上面部にかけてひ び割れに相当する主ひずみが表れていることからコーン破 壊が発生していることが確認できる. 図-7 のずれ要素残存付 着率では, D19 のケースにおいて埋め込み深さが約 25mm 付近 から深い位置で残存付着率が0.1まで減少していることから 付着破壊が発生している.一方で,D29のケースでは埋め込 み深さが約 50mm までは残存付着率が 0.1 に達しておらず, 50mm以降0.1まで減少しており付着破壊とコーン破壊が発生 している.D38 のケースではずれ要素残存付着率がボルト底 面部近傍まで 0.1 に達していないことから、付着破壊よりも コーン破壊が発生している可能性が高い.これらのことから, ボルト径が大きくなるほど付着破壊からコーン破壊を含む 複合破壊に破壊性状が変化していく傾向が得られた.

4. 結論

ボルトの径が大きくなるにつれ,最大荷重は増加し,破壊 性状は付着破壊からコーン破壊を含む複合破壊に変化する 傾向が得られた.ずれ要素の残存付着率より,ボルト径に応 じて破壊性状が変化する傾向が得られた.

謝辞

本研究は,平成28年度科学研究費補助金・若手研究(B)(研 究代表者:宗本理,課題番号 16K18142)の助成を受けて行い ました.ここに記して,深く感謝の意を表します.

参考文献

 松崎育弘,川瀬清孝,永田守正,石川公章,今井清史, 竹内博:樹脂アンカーの支持耐力に関する実験的研究, 日本建築学会学術講演概要集, 1983.9 力学論文集, Vol. 46A, pp. 1-8, 2008, 8月.

